Nonlinear (in)stability of some special solutions to the Lorentzian Constant Mean Curvature Flow

Willie WY Wong wongwwy@member.ams.org EPF Lausanne

20 January, 2015 Mathematics Colloquium

Michigan State University

Based on

arXiv: 1310.5606 (with R. Donninger, J. Krieger, and J. Szeftel) arXiv: 1404.0223

Dynamics of extended bodies

	Point particle	Extended object
Geometry	world line	world sheet
Newtonian	$\vec{F} = m\vec{a}$?
Relativistic	$\vec{F} = \frac{\mathrm{d}}{\mathrm{d}t}\vec{p}$?

Application to HEP:

classical field theory of strings and membranes

Strings in linear regime: D'Alembert (1747) (The first PDE!)

Nonlinear theory: surface tension and mean curvature

Young (1805), Laplace (1806), Gauss (1830) Fluid interface: $\Phi \stackrel{\text{def}}{=} \Delta \text{pressure} \propto \text{MC}$

Dynamics of extended bodies

	Point particle	Extended object
Geometry	world line	world sheet
Newtonian	$\vec{F} = m\vec{a}$	$(\Phi - MC)\vec{n} = \mu \vec{a}$
Relativistic	$\vec{F} = \frac{\mathrm{d}}{\mathrm{d}t}\vec{p}$	$\vec{\Phi} = \vec{MC}_{\text{space-time}}$

Particle:static \Leftrightarrow no force \Leftrightarrow flat/linearExtended:hyperplane (static + no force + flat)

<u>minimal submanifold</u> (static + no force + nat) <u>bubbles</u> (static + force + curved)

External force

No force $\Leftrightarrow MC = 0$

Full theory: coupled external fields (fluids, electromagnetism, gravity, etc.)

Codim. 1 case: can scalarise

Lorentzian Constant Mean Curvature Flow

Relativistic dynamics of codimension-one extended test bodies subject to constant external normal force

Model: Hypersurfaces in Minkowski space $\mathbb{R}^{1,d+1}$ with

- Lorentzian induced metric
- MC scalar $\equiv 0$ or $\pm (d + 1)$ (rescale)

Study Cauchy problem ("flow")

Cauchy problem with data at fixed time

Initial data:

- position: $\Sigma \subset \mathbb{R}^{d+1}$ a (smooth) hypersurface
- momentum: $p: \Sigma \to \mathbb{R}^{d+1}$ a vector field

Solution: $M \subset \mathbb{R}^{1,d+1}$ a hypersurface s.t.

- *M* is CMC (with requisite value)
- $M \cap \{t = 0\} = \{0\} \times \Sigma$

• for $q \in M \cap \{t = 0\}$, the tangent space $T_q M = T_q \Sigma \oplus \left(1, \frac{p(q)}{\sqrt{1 + |n(q)|^2}}\right)$

Note $T_q M$ is Lorentzian as the speed $\left| \frac{p}{\sqrt{1+|p|^2}} \right| < 1$

Equation in local coordinates

Neighbourhood $N_q \subset M$ is a graph over tangent hyperplane:

$$N_q = \left\{ q + y + \phi(y)n \mid y \in T_qM, \ n \perp T_qM \right\}$$

Parametrise $T_q M \cong \mathbb{R}^{1,d}$ with Minkowskian coordinates $\{y^{\mu}\}_{\mu=0,\dots,d}$:

$$\frac{\partial}{\partial y^{\mu}} \left(\frac{\eta^{\mu\nu} \partial_{\nu} \phi}{\sqrt{1 + \eta(\partial \phi, \partial \phi)}} \right) = C$$

where *C* is MC, and $\eta = diag(-1, 1, ..., 1)$ is Minkowski metric

QNLW $\Leftrightarrow \eta(\partial \phi, \partial \phi) > -1 \Leftrightarrow M$ is Lorentzian

Local well-posedness

Theorem 1. Smooth data $\implies \exists!$ maximal Cauchy development

Proof. Spatially localized LWP for QNLW + finite speed of propagation + locally finite cover

Theorem 2. Σ compact or complete asymptotically graphical + p uniformly bounded \implies lower bound on time of existence by ||data||

Proof. Finite cover + QNLW breakdown criterion $[\eta(\partial\phi,\partial\phi) > -1 \text{ and } \|\partial\phi\|_{W^{1,\infty}} < \infty]$

Global problems

Do singularities form?

No: global existence

- Stability
- Asymptotic behaviour

Yes: finite-time blow-up

- Stability
- Asymptotic profile
- Structure of singularity
- Weak extension

Today's talk:

<u>Stability</u> of some special solutions known to exist globally in time

Special solutions; MC = 0

<u>"Catenoid"</u> :	
$\mathbb{R} \times \Sigma$ with $\Sigma \subset \mathbb{R}^{d+1}$	
Σ hypersurface of revolution	
$\int r'(y) = \operatorname{sgn}(y)\sqrt{1 - r^{-2(d-1)}}$	
$\Big\{ z'(y) = r^{-(d-1)} $	
Static	
Negatively curved	
Asymptotically flat	

Spatial slices of "catenoids"

Special solutions; MC = (d + 1) > 0

Special solutions; MC = (d + 1) > 0

Einstein cylinder:de Sitter space:
$$\{r = d/(d + 1)\}$$
 $\{r = \sqrt{1 + t^2}\}$ $\cong \mathbb{R} \times \mathbb{S}^d$ $= \{\eta(x, x) = 1\}$ (pseudosphere)StaticExpandingPositively curvedCompact spatial section

Question

For each of the three solutions

- hyperplane
- "catenoid"
- de Sitter

Is it stable under "small perturbations" w.r.t. the Lorentzian CMC flow?

(Work in progress: Einstein cylinder.)

But...trivial instability?

Actions of the Poincaré group, except

- <u>Hyperplane</u>: tangential translations and boosts
- <u>Catenoid</u>: time-translations and co-axial rotations
- <u>de Sitter</u>: Lorentz group

(MC = 0 also dilations)

How do we properly "ignore" these trivial instabilities (TIs)?

A Chart

	Instability mech.	Stability mech.	Result
Hyp.	TI + ?		
Cat.	TI + ?		
dS	TI + ?		

Hyperplane

- Perturbations are graphs
- General theory of quasilinear wave equations
- Kill TIs by spatial decay of data: compact support, weighted Sobolev spaces etc
- No other instability
- Dispersion \implies decay

Chart

Null condition

When d > 3, $t^{-(d-1)/2}$ integrable \implies stability

 $d \le 3$, quadratic obstruction $d \le 2$, cubic obstruction d = 1, no dispersion

Quadratic NC: Christodoulou (1986) and Klainerman (1986) Cubic NC: Alinhac (2001) + earlier weaker versions

<u>Idea</u>: decay for $\partial \phi$ not isotropic; "tangential" components gain t^{-1} only one bad "transverse" direction ⇒ can exploit good product structure Brendle (2002) for $d \ge 3$ and Lindblad (2004) for $d \ge 1(!)$

Chart

	Instability mech.	Stability mech.	Result
Нур.	$\frac{1}{1}$ $(\infty) + \emptyset$	dispersion $t^{-\frac{d-1}{2}}$;	stable
Cat.	TI + ?		
dS	TI + ?		

Equation of motion: normal-graph gauge

Describe perturbation as graph in normal bundle:

- M a special solution g induced Lorentzian metric
- n unit normal v.f. k 2nd fund. form
- Perturbed solution

$$\tilde{M} = \{ q + \phi(q)n \mid q \in M \}$$

 $\phi: M \to \mathbb{R}$ — the "height"; solves

 $\Box_g \phi + (k:k)\phi =$ nonlinearity

k: k — double contraction \square_g — wave operator (*M*, *g*)

Aside: linearised equations

Linearised perturbation equations of non-trivial solutions are typically not the geometric wave equation

Background \implies lower order terms

Example: Regge-Wheeler equations in general relativity

Linear instability

Linearised equation: $\Box_g \phi + (k:k)\phi = 0$

$$k:k = \begin{bmatrix} Hyp. & Cat. & dS \\ \frac{d(d-1)}{r^{2d}} & d+1 \end{bmatrix}$$

 $(k:k) > 0 \Leftrightarrow$ attractive potential exponentially growing modes geometric origins

Instability in spherical symmetry, MC = d + 1

Clear for EC, but de Sitter? (Return to this later)

Chart

	Instability mech.	Stability mech.	Result
Hyp.	\pm (∞)	dispersion $t^{-\frac{d-1}{2}}$; NC	stable
Cat.	TI + <mark>mode</mark> + ?		
dS	TI + <mark>mode(?)</mark> + ?		

Catenoid: asymptotic flatness

Decay at ∞ kills some of TIs; except translations orthogonal to z

Far away from "throat", $t^{-(d-1)/2}$ dispersion holds generally

Catenoid: null condition

Given solution to QNLW, whether NC holds for perturbation equations depends on solution

Example: fluid models and formation of shock (Christodoulou 2007; Holzegel-Klainerman-Speck-Wong 2014)

Exception: Lorentzian CMC flow (characterisation among "fluids")

Chart

	Instability mech.	Stability mech.	Result
Hyp.	\mp I (∞)	dispersion $t^{-\frac{d-1}{2}}$; NC	stable
Cat.	TI <mark>(some killed</mark>	ext. disp. + NC	
	<mark>at ∞)</mark> + mode + ?		
dS	TI + mode(?) + ?		

Catenoid: trapping

closed geodesics at the throat \implies trapped null geodesics

wave packets \implies derivative loss in decay estimates expected major obstacle, work in progress Catenoid: symmetry

Axial symmetry assumption

- Kills remaining TI
- Removes trapping

Problem still non-trivial

- Linear instability
- How to capture dispersion near the throat?

Catenoid: centre stable manifold

y denotes the radial unit-length coordinate on the catenoid y = 0 at the throat.

For $\phi = \phi(y)$ a radial C_0^{∞} function on a catenoid we define the weighted Sobolev norm

$$\left\|\phi\right\|_{X^{k}} = \sum_{j=0}^{k} \left\|(1+y^{2})^{k/2}\partial_{y}^{j}\phi(y)\right\|_{L^{1}\cap L^{2}(r^{(d-1)/2} dy)}$$

Let ϕ_{gs} denote the exponential growing mode

1

Catenoid: centre stable manifold

Theorem 3 (DKSW 2013). *There exists* $N \gg 0$ *and* $\delta > 0$ *such that for every* $(\phi_0, \phi_1) \in C_{0,rad}^{\infty}(Cat)$ *verifying*

 $\|\phi_0\|_{X^{N+1}} + \|\phi_1\|_{X^N} < \delta,$

there exists $\alpha = \alpha(\phi_0, \phi_1)$, with Lipschitz continuous dependence on (ϕ_0, ϕ_1) w.r.t. $X^{N+1} \times X^N$, such that the modified initial perturbation

 $(\phi_0 + \alpha \phi_{gs}, \phi_1)$

leads to a solution existing globally in forward time and converges asymptotically to 0 at the rate $\sup_{v} |\phi(t, y)| \leq (1 + t)^{-\frac{1}{2}}$.

Remark:

Proved for d = 2, but same technique carries identically to d > 2

Catenoid: centre stable manifold

Key ideas:

- Orthogonally decompose $\phi = h(t)\phi_{gs} + \varphi$
- Linear decay (incl. int.) for φ using distorted Fourier transform
- *h*(*t*) solves "ODE"
- Bootstrap:
 - first estimates for φ ; use null condition
 - IBP for top order terms
 - then estimates for h; use one-dimensionality of unstable directions to modify α if needed

Chart

	Instability mech.	Stability mech.	Result
Hyp.	\mp I (∞)	dispersion $t^{-\frac{d-1}{2}}$; NC	stable
Cat.	$\frac{TH}{S}(sym/\infty) +$	dispersion +	axi-sym.
	<mark>trap</mark> (sym) +	NC	codim 1 stable
	mode		
dS	TI + mode(?) + ?		

de Sitter: mode instability?

Rel. to normal bundle: exp. growth in proper time linear growth in ambient time *t*

Rel. to ambient coordinate system: bounded!

Deceptive linear stability analysis

de Sitter: ... maybe just a bad gauge?

Rel. to normal bundle, the translation TI also "exp. growth"

In spherical symmetry, all solutions approach light-cones: <u>unique asymptotic profile</u>

Can we modulate? (Can't kill TI: no ∞ , also time translation)

Interlude: modulation theory

Basic philosophy: <u>Stability of a family of solutions</u>

- Represent family as manifold in function space
- Decompose EoM to ODE on manifold + orthogonal PDE
- Show PDE decays

Soliton dynamics for NLW, NLS Due originally to M.I. Weinstein (1985, 1986) de Sitter: modulation?

Works in spherical symmetry (single asymptotic profile)

de Sitter: modulation insufficient

Theorem 4 (W 2014). *The linearised equation has infinitely many exponential growing modes.*

Theorem 5 (W 2014). For full nonlinear problem, \exists arbitrarily small perturbations whose global solutions cannot converge to any space-time translation of dS.

de Sitter: cosmological horizon

space expanding w/ speed > *c*

separate asym. regimes

- Minkowski: only one
- dS: entire sphere

many "time-like" infinities; different asymptotics

amplifies TI to ∞ -dim

de Sitter: cosmological horizon

Already seen in GR:

- Linear wave on asymp. dS manifolds
- Non-linear stability of FLRW geometries "freezing-in" perturbations (H. Ringstrom, J. Speck, I. Rodnianski, etc.)

Expansion \implies spatial derivatives decay exp. faster (Mink: polynomial)

True even for "our" linearised equation (w/ potential)

de Sitter: spatial-local stability

Theorem 6 (W 2014). A sufficiently small (in H^N , N > d + 3) perturbation of de Sitter initial data leads to

- a solution that exists global in time, s.t.
- for every ideal point ω in future time-like infinity ($\cong \mathbb{S}^d$) there exists $(\tau, \xi) \in \mathbb{R}^{1,d+1}$ such that in the past domain of dependence of ω , the solution converges to dS translated by (τ, ξ) . The mapping $\omega \mapsto (\tau, \xi)$ is Lipschitz, with global bound by the size of initial perturbation.

de Sitter: main ideas

Study second fundamental form instead of "graph"

- intrinsic geometry vs. extrinsic representation
- objects at the level of "derivative" so decay
- equations of motion: Gauss-Codazzi
- GR analogy: Bianchi for Weyl vs. wave for metric

de Sitter: main ideas

IGM: inverse Gauss map gauge

- compare perturbation and original via Gauss map
 - GM in $\mathbb{R}^{1,d+1}$ takes values in dS!
- space-time dependent modulation
- quasilinear div-curl system for Sym-2 field on dS
 - develop vector field method for such systems
- GR analogy: choice of foliation in stab. of Mink.

de Sitter: main ideas

Vector field method for quasilinear div-curl system

- energy-momentum ⇒ Bel-Robinson type tensor (constant coeff. case by Brendle 2002)
- commutators: ambient rotations = intrinsic translations (note: *t*-weighted)
- multipliers: unit time vector (note: not Killing!)
- *t*-weighted energy estimates
 (note: weight necessary due to expansion)

Chart

	Instability mech.	Stability mech.	Result
Hyp.	\mp I (∞)	dispersion $t^{-\frac{d-1}{2}}$; NC	stable
Cat.	TI (sym/∞) + trap (sym) + mode	dispersion + NC	axi-sym co-dim 1 stable
dS	TI + 'mode'	exp. der. decay	spatial-local
	(IGM)	from expansion	stability

Thank you!