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Dynamics of extended bodies

Point particle Extended object

Geometry world line world sheet

Newtonian ~F =m~a ?

Relativistic ~F = d
dt ~p ?

Application to HEP:
classical field theory of strings and membranes

Strings in linear regime: D’Alembert (1747) (The first PDE!)
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Nonlinear theory: surface tension and mean curvature

Young (1805), Laplace (1806), Gauss (1830)

Fluid interface: Φ
def= ∆pressure ∝MC
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Dynamics of extended bodies

Point particle Extended object

Geometry world line world sheet

Newtonian ~F =m~a (Φ −MC)~n = µ~a

Relativistic ~F = d
dt ~p

~Φ = ~MCspace-time

Particle: static⇔ no force⇔ flat/linear

Extended: hyperplane (static + no force + flat)

minimal submanifold (static + no force + curved)

bubbles (static + force + curved)
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External force

No force⇔MC = 0

Full theory: coupled external fields
(fluids, electromagnetism, gravity, etc.)

Codim. 1 case: can scalarise
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Lorentzian Constant Mean Curvature Flow

Relativistic dynamics of codimension-one extended test bodies subject
to constant external normal force

Model: Hypersurfaces in Minkowski space R
1,d+1 with

• Lorentzian induced metric

• MC scalar ≡ 0 or ±(d + 1) (rescale)

Study Cauchy problem (“flow”)
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Cauchy problem with data at fixed time

Initial data:

• position: Σ ⊂R
d+1 a (smooth) hypersurface

• momentum: p : Σ→R
d+1 a vector field

Solution: M ⊂R
1,d+1 a hypersurface s.t.

• M is CMC (with requisite value)

• M ∩ {t = 0} = {0} ×Σ

• for q ∈M ∩ {t = 0}, the tangent space TqM = TqΣ⊕
(
1, p(q)√

1+|p(q)|2

)
Note TqM is Lorentzian as the speed

∣∣∣∣∣ p√
1+|p|2

∣∣∣∣∣ < 1
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Equation in local coordinates

Neighbourhood Nq ⊂M is a graph over tangent hyperplane:

Nq =
{
q+ y +φ(y)n

∣∣∣ y ∈ TqM, n⊥ TqM }

Parametrise TqM �R
1,d with Minkowskian coordinates {yµ}µ=0,...,d :

∂
∂yµ

 ηµν∂νφ√
1 + η(∂φ,∂φ)

 = C

where C is MC, and η = diag(−1,1, . . . ,1) is Minkowski metric

QNLW⇔ η(∂φ,∂φ) > −1⇔M is Lorentzian
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Local well-posedness

Theorem 1. Smooth data =⇒ ∃! maximal Cauchy development

Proof. Spatially localized LWP for QNLW + finite speed of
propagation + locally finite cover

Theorem 2. Σ compact or complete asymptotically graphical + p

uniformly bounded =⇒ lower bound on time of existence by ‖data‖

Proof. Finite cover + QNLW breakdown criterion
[η(∂φ,∂φ) > −1 and

∥∥∥∂φ∥∥∥
W 1,∞ <∞]
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Global problems

Do singularities form?

No: global existence Yes: finite-time blow-up

• Stability

• Asymptotic behaviour

• Stability

• Asymptotic profile

• Structure of singularity

• Weak extension
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Today’s talk:

Stability of some special solutions known to exist
globally in time
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Special solutions; MC = 0

Hyperplane: “Catenoid”:

R
1,d × {0} R×Σ with Σ ⊂R

d+1

Σ hypersurface of revolutionr ′(y) = sgn(y)
√

1− r−2(d−1)

z′(y) = r−(d−1)

Static Static

Totally geodesic Negatively curved

Flat Asymptotically flat
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Spatial slices of “catenoids”

d = 2: d = 3 (some dim’s suppressed):

z = sinh−1(y) bounded in z

r =
√

1 + y2 r ≈ 1 +
∣∣∣y∣∣∣
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Special solutions; MC = (d + 1) > 0

Rotational symmetry: r = r(t),

 r ′√
1− (r ′)2

′ = (d + 1)− d

r
√

1− (r ′)2

r

t

r ≡ d

d +1

r =
√
1+ t2
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Special solutions; MC = (d + 1) > 0

Einstein cylinder: de Sitter space:

{r = d/(d + 1)} {r =
√

1 + t2}
�R×Sd = {η(x,x) = 1} (pseudosphere)

Static Expanding

Positively curved
Compact spatial section
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Question

For each of the three solutions

• hyperplane

• “catenoid”

• de Sitter

Is it stable under “small perturbations” w.r.t. the Lorentzian CMC
flow?

(Work in progress: Einstein cylinder.)
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But. . . trivial instability?

Actions of the Poincaré group, except

• Hyperplane: tangential translations and boosts

• Catenoid: time-translations and co-axial rotations

• de Sitter: Lorentz group

(MC = 0 also dilations)

How do we properly “ignore” these trivial instabilities (TIs)?
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A Chart

Instability mech. Stability mech. Result

Hyp. TI + ?

Cat. TI + ?

dS TI + ?
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Hyperplane

• Perturbations are graphs

• General theory of quasilinear wave equations

• Kill TIs by spatial decay of data: compact support, weighted
Sobolev spaces etc

• No other instability

• Dispersion =⇒ decay
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Chart

Instability mech. Stability mech. Result

Hyp. TI (∞)+ ∅ dispersion t−
d−1

2

Cat. TI + ?

dS TI + ?
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Null condition

When d > 3, t−(d−1)/2 integrable =⇒ stability

d ≤ 3, quadratic obstruction
d ≤ 2, cubic obstruction
d = 1, no dispersion

Quadratic NC: Christodoulou (1986) and Klainerman (1986)
Cubic NC: Alinhac (2001) + earlier weaker versions

Idea: decay for ∂φ not isotropic;
“tangential” components gain t−1

only one bad “transverse” direction
=⇒ can exploit good product structure

Brendle (2002) for d ≥ 3 and Lindblad (2004) for d ≥ 1(!)
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Chart

Instability mech. Stability mech. Result

Hyp. TI (∞) + ∅ dispersion t−
d−1

2 ;
NC

stable

Cat. TI + ?

dS TI + ?
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Equation of motion: normal-graph gauge

Describe perturbation as graph in normal bundle:

• M — a special solution g — induced Lorentzian metric

• n — unit normal v.f. k — 2nd fund. form

• Perturbed solution

M̃ = { q+φ(q)n
∣∣∣ q ∈M }

φ :M→R — the “height”; solves

�gφ+ (k : k)φ = nonlinearity

k : k — double contraction �g — wave operator (M,g)
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Aside: linearised equations

Linearised perturbation equations of non-trivial solutions are
typically not the geometric wave equation

Background =⇒ lower order terms

Example: Regge-Wheeler equations in general relativity
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Linear instability

Linearised equation: �gφ+ (k : k)φ = 0

Hyp. Cat. dS

k : k 0
d(d − 1)
r2d

d + 1

(k : k) > 0⇔ attractive potential
exponentially growing modes
geometric origins
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Instability in spherical symmetry, MC = d + 1

r

t

r ≡ d

d +1

r =
√
1+ t2

Clear for EC, but de Sitter? (Return to this later)
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Chart

Instability mech. Stability mech. Result

Hyp. TI (∞) dispersion t−
d−1

2 ;
NC

stable

Cat. TI + mode + ?

dS TI + mode(?) +
?
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Catenoid: asymptotic flatness

Decay at∞ kills some of TIs; except translations orthogonal to z

Far away from “throat”, t−(d−1)/2 dispersion holds generally
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Catenoid: null condition

Given solution to QNLW, whether NC holds for perturbation
equations depends on solution

Example: fluid models and formation of shock
(Christodoulou 2007; Holzegel-Klainerman-Speck-Wong 2014)

Exception: Lorentzian CMC flow
(characterisation among “fluids”)
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Chart

Instability mech. Stability mech. Result

Hyp. TI (∞) dispersion t−
d−1

2 ;
NC

stable

Cat. TI (some killed

at∞) + mode +
?

ext. disp. + NC

dS TI + mode(?) + ?
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Catenoid: trapping

closed geodesics at the throat =⇒ trapped null geodesics

wave packets =⇒ derivative loss in decay estimates expected

major obstacle, work in progress
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Catenoid: symmetry

Axial symmetry assumption

• Kills remaining TI

• Removes trapping

Problem still non-trivial

• Linear instability

• How to capture dispersion near the throat?
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Catenoid: centre stable manifold

y denotes the radial unit-length coordinate on the catenoid
y = 0 at the throat.

For φ = φ(y) a radial C∞0 function on a catenoid we define the
weighted Sobolev norm

∥∥∥φ∥∥∥
Xk

=
k∑
j=0

∥∥∥∥(1 + y2)k/2∂jyφ(y)
∥∥∥∥
L1∩L2(r(d−1)/2 dy)

Let φgs denote the exponential growing mode

34



Catenoid: centre stable manifold

Theorem 3 (DKSW 2013). There exists N � 0 and δ > 0 such that
for every (φ0,φ1) ∈ C∞0,rad(Cat) verifying∥∥∥φ0

∥∥∥
XN+1 +

∥∥∥φ1

∥∥∥
XN

< δ,

there exists α = α(φ0,φ1), with Lipschitz continuous dependence on
(φ0,φ1) w.r.t. XN+1 ×XN , such that the modified initial perturbation

(φ0 +αφgs,φ1)

leads to a solution existing globally in forward time and converges

asymptotically to 0 at the rate supy |φ(t,y)| . (1 + t)−
1
2 .

Remark:
Proved for d = 2, but same technique carries identically to d > 2
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Catenoid: centre stable manifold

Key ideas:

• Orthogonally decompose φ = h(t)φgs +ϕ

• Linear decay (incl. int.) for ϕ using distorted Fourier transform

• h(t) solves “ODE”

• Bootstrap:

– first estimates for ϕ; use null condition

– IBP for top order terms

– then estimates for h; use one-dimensionality of unstable
directions to modify α if needed
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Chart

Instability mech. Stability mech. Result

Hyp. TI (∞) dispersion t−
d−1

2 ;
NC

stable

Cat. TI (sym/∞) +

trap (sym) +

mode

dispersion +
NC

axi-sym.

codim 1 stable

dS TI + mode(?) + ?
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de Sitter: mode instability?

r

t

r ≡ d

d +1

r =
√
1+ t2

Rel. to normal bundle: exp. growth in proper time
linear growth in ambient time t

Rel. to ambient coordinate system: bounded!
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Deceptive linear stability analysis

Static: same function space ∀t Non-static: how to compare?
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de Sitter: . . . maybe just a bad gauge?

Rel. to normal bundle, the translation TI also “exp. growth”

In spherical symmetry, all solutions approach light-cones:
unique asymptotic profile

Can we modulate? (Can’t kill TI: no∞, also time translation)
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Interlude: modulation theory

Basic philosophy: Stability of a family of solutions

• Represent family as manifold in function space

• Decompose EoM to ODE on manifold + orthogonal PDE

• Show PDE decays

Soliton dynamics for NLW, NLS
Due originally to M.I. Weinstein (1985, 1986)
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de Sitter: modulation?

Solution Asymptotics

⇓ ⇑
dS w/ time-dependent
space-time translation

=⇒ convergence in time

+ +

perturbations =⇒ decay

Works in spherical symmetry (single asymptotic profile)
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de Sitter: modulation insufficient

Theorem 4 (W 2014). The linearised equation has infinitely many
exponential growing modes.

Theorem 5 (W 2014). For full nonlinear problem, ∃ arbitrarily small
perturbations whose global solutions cannot converge to any space-time
translation of dS.
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de Sitter: cosmological horizon

space expanding w/ speed > c

separate asym. regimes
•Minkowski: only one
• dS: entire sphere

many “time-like” infinities;
different asymptotics

amplifies TI to∞-dim
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de Sitter: cosmological horizon

Already seen in GR:

• Linear wave on asymp. dS manifolds

• Non-linear stability of FLRW geometries
“freezing-in” perturbations
(H. Ringstrom, J. Speck, I. Rodnianski, etc.)

Expansion =⇒ spatial derivatives decay exp. faster
(Mink: polynomial)

True even for “our” linearised equation (w/ potential)
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de Sitter: spatial-local stability

Theorem 6 (W 2014). A sufficiently small (in HN , N > d + 3)
perturbation of de Sitter initial data leads to

• a solution that exists global in time, s.t.

• for every ideal point ω in future time-like infinity (� S
d) there

exists (τ,ξ) ∈R1,d+1 such that in the past domain of dependence of
ω, the solution converges to dS translated by (τ,ξ). The mapping
ω 7→ (τ,ξ) is Lipschitz, with global bound by the size of initial
perturbation.
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de Sitter: main ideas

Study second fundamental form instead of “graph”

• intrinsic geometry vs. extrinsic representation

• objects at the level of “derivative” so decay

• equations of motion: Gauss-Codazzi

• GR analogy: Bianchi for Weyl vs. wave for metric
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de Sitter: main ideas

IGM: inverse Gauss map gauge

• compare perturbation and original via Gauss map

– GM in R
1,d+1 takes values in dS!

• space-time dependent modulation

• quasilinear div-curl system for Sym-2 field on dS

– develop vector field method for such systems

• GR analogy: choice of foliation in stab. of Mink.

48



de Sitter: main ideas

Vector field method for quasilinear div-curl system

• energy-momentum =⇒ Bel-Robinson type tensor
(constant coeff. case by Brendle 2002)

• commutators: ambient rotations = intrinsic translations
(note: t-weighted)

• multipliers: unit time vector
(note: not Killing!)

• t-weighted energy estimates
(note: weight necessary due to expansion)
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Chart

Instability mech. Stability mech. Result

Hyp. TI (∞) dispersion t−
d−1

2 ;
NC

stable

Cat. TI (sym/∞) +
trap (sym) +
mode

dispersion + NC axi-sym co-dim
1 stable

dS TI + ‘mode’

(IGM)

exp. der. decay

from expansion

spatial-local

stability

50



Thank you!
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