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Abstract. In this set of notes, an unconventional method of deriving the

Kerr metric is presented.

1. Introduction and the first ansatz

In this note we give a heuristic derivation of the Kerr metric, in a way quite
significantly different from the classical methods. This is in no way a formal write-
up, so for a more rigorous derivation, and for references, please see the wonderful
article by Roberto Bergamini and Stefano Viaggiu, “A novel derivation for Kerr
metric in Papapetrou gauge.”1 The method described herein is inspired by Marc
Mars’ paper “A spacetime characterization of the Kerr metric”2, and also by the
author’s 2009 PhD dissertation.

The question we seek to answer is: find a solution of the Einstein vacuum equa-
tions that is stationary and axially symmetric. However, to actually answer the
question, we will need to impose very significant, and not ab initio justifiable, con-
straints. It is only with great hindsight (that we know the solution we seek already)
that the constraints seem natural. On the other hand, we will try to argue that
these constraints are not completely wild guesses: by following a particular coher-
ent chain of thought, it may have been possible to have obtained the Kerr metric
through this method with no prior knowledge of the metric.

The principal argument here is thus: we first consider the Ernst potential on a
stationary solution to the Einstein equations. Next we compute the Ernst poten-
tial, the Ernst two-form, and the Weyl curvature of the Schwarzschild metric. By
observing that Schwarzschild is algebraically special, we make the ansatz that we
want to search for a similarly algebraically special solution. We find that through
some cosmic cöıncidences, there exists additional solutions beside the Schwarzschild
metric that satisfy the algebraic condition. And through a calculation we (almost)
show that this is the Kerr metric.

First we begin by quantifying the type of solutions we are actually looking for.
The presentation here is standard, and the assumptions given here are made from
first principles and form the common starting point of every “derivation” of the
Kerr metric. In particular, we define what a solution is and what the symmetry
conditions means. We seek to answer the following problem

Problem 1. We want to find a four-dimensional Lorentzian manifold (M, gab) such
that it is Ricci flat. We ask that it admits two Killing vector fields τa, ηa which
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commute ([τ, η] = 0) and whose normal distribution {τ, η}⊥ ⊂ TM is space-like
and integrable.

It is clear that from the formulation above, our solution manifold can be ruled
by two transverse foliations: one by the integrated normal distribution, one by
the tangential distribution to τ, η. Each of the foliation is two dimensional, so the
induced metric on it can be diagonalized (at least locally). Therefore immediately
the formulation of the problem admits the following ansatz

(1) ds2 = −Sdt2 + 2Qdtdφ+Rdφ2 + V dr2 +Wdθ2

where ∂t = τ and ∂φ = η are the Killing vector fields and the functions S,Q,R, V,W
are functions of r and θ only. It suffices to solve for the five unknown functions and
show that the orbits of η are closed.

Unfortunately, if one writes down the Ricci-flat condition for the above ansatz,
one gets a monstrous set of equations that takes tens of pages to be written.

A quick note: in the following, for a tensor quantity Xabc···d, we write X2 for
the full contraction against itself

X2 = Xabc···dXlmn···og
algbmgcn · · · gdo .

In other words, we write X2 for g(X,X) where g(·, ·) is, by an abuse of notation, the
inner product induced on the tensor bundle by the Lorentzian metric. In particular,
X2 is a scalar that can be of arbitrary sign.

2. The algebraic alignment condition

To further simplify the equations, we want to impose additional constraints. Here
we give a line of (perhaps questionable) reasoning that leads to certain algebraic
constraints.

2.1. The Ernst two-form and Ernst potential. Consider the Killing vector
field τa. We write τa for its dual one-form. Killing’s equation implies that ∇aτb is
anti-symmetric, so the two form

(2) Fab = (dτ)ab = ∇aτb −∇bτa = 2∇aτb
is defined. This two-form is called the Ernst two-form. As is well known, the second
covariant derivatives of a Killing vector field is given by the Riemann curvature
tensor

(3) ∇cFab = 2∇c∇aτb = 2Rdcabτ
d .

This implies that Fab is a Maxwell field with source:

∇[cFab] = 0(4a)

∇aFab = −2Rdbτ
d(4b)

where the first line is due to either the exterior algebra d◦d = 0 or the first Bianchi
identity on Rabcd (the two are equivalent), and the second one by contracting (3)
above. Observe that for a solution of the Einstein vacuum equation, Fab is a free
Maxwell field. From now on we will make the assumption that we are considering
a solution of the Einstein vacuum equation3.

3Some of the computations below cannot be done in the non-vacuum case. I’ll leave it to the
readers to figure out where the difficulties are.
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As a Maxwell field, the form Fab has a natural electromagnetic decomposition

(5) Ea := Fabτ
b = 2(∇aτb)τ b = ∇aτ2 , Ba = (∗F )abτ

b

where ∗ is the Hodge dual operator, which we can write in coördinates

(6) (∗F )ab =
1

2
εabcdF

cd

where εabcd is the volume form (or the Levi-Civita symbol in an orthonormal frame).
When τa is not a null-vector, we claim that, as in the case of standard Maxwell
theory on Minkowski space (where τ is replaced by the time coördinate derivative),
we can reconstitute Fab from the electromagnetic components using the following
algebraic identity

(7) τ2Fab = Eaτb − Ebτa − εabcdBcτd

Now, let us examine the magnetic part Ba. It is also called the twist of the
Killing vector field τa. Observe that by Frobenius’ theorem, the normal bundle to
the vector field τa is integrable if and only if Ba = 0. In other words, the twist
tells us whether τa is hypersurface-orthogonal. As seen above, Ea is exact: it arises
from the potential τ2. We claim that since τ is Killing, and since that the space
is Ricci-flat, Ba also has a potential. Observe that d∗F = −∗δ∗F = 0. So ∗F is a
closed two-form. Now use the Cartan relation

LXω = d(iXω) + iX(dω)

where ω is a form and X a vector field by taking X = τ and ω = ∗F . Since τ is
Killing, and F is geometric, we must have that Lτ ∗F = 0. Therefore we conclude
that

(8) d(iτ
∗F ) = 0 = dB .

Now if we assume our space-time is simply connected (or let’s say we look at a
simply connected domain), we can define, up to a constant, a real-valued scalar Θ
such that dΘ = B. This Θ is called the Ernst potential

So why do we care about the Ernst two-form? Recall our ansatz (1), we know
that τ2 = −S. Now, observe that the dual one-form to the Killing vector field τ is
given by

τ [ = −Sdt+Qdφ

and so using that S and Q are independent of t and φ, we have

(9) F = ∂rSdt ∧ dr + ∂θSdt ∧ dθ − ∂rQdφ ∧ dr − ∂θQdφ ∧ dθ .

On the other hand, taking the orientation

(10) dvol =
(
(SR+Q2)VW

) 1
2 dt ∧ dφ ∧ dr ∧ dθ

we can compute using (7) an expression for F in terms of E and B. Observe that
τ2 and Θ should both be independent of t and φ, so that

B = ∂rΘdr + ∂θΘdθ , E = −∂rSdr − ∂θSdθ .

Therefore

E ∧ τ [ = −S∂rSdt ∧ dr − S∂θSdt ∧ dθ +Q∂rSdφ ∧ dr +Q∂θSdφ ∧ dθ(11a)

B ∧ τ [ = S∂rΘdt ∧ dr + S∂θΘdt ∧ dθ −Q∂rΘdφ ∧ dr −Q∂θΘdφ ∧ dθ(11b)
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and so, by observing that the inverse metric is given by

− R

SR+Q2
(∂t)

2 +
2Q

SR+Q2
∂t∂φ +

S

SR+Q2
(∂φ)2 +

1

V
(∂r)

2 +
1

W
(∂θ)

2

we can write

−SF = −S∂rSdt ∧ dr − S∂θSdt ∧ dθ +Q∂rSdφ ∧ dr +Q∂θSdφ ∧ dθ(12)

−
(
(SR+Q2)VW

) 1
2 (
∂rΘ

V
dφ ∧ dθ − ∂θΘ

W
dφ ∧ dr)

which implies that

S∂rQ = Q∂rS +
√

(SR+Q2)VW
∂θΘ

W
(13a)

S∂θQ = Q∂θS −
√

(SR+Q2)VW
∂rΘ

V
(13b)

2.2. The anti-self-dual fields and complexification. For ease of algebraic ma-
nipulations, often we consider the anti-self-dual versions of two-forms. Observe that
on a four-dimensional Lorentzian manifold, the Hodge star operator takes two-forms
to two-forms, and squares to −1. This implies that its eigenvalues can only be ±i.
So we complexify our geometry by ⊗RC linearly (so in particular

(X + iY )2 = X2 + 2ig(X,Y )− Y 2

and not the Hermitian product). It is clear that (via a little bit of linear algebra)
that the space of two-forms Λ2T ∗M splits after complexification

(14) Λ2T ∗M ⊗R C = Λ+ ⊕ Λ−

where Λ± are spaces of complex-valued two-forms that have eigenvalues ±i under
∗ respectively. It is also clear that there is a natural isomorphism from Λ2T ∗M to
each of Λ± (they all have real dimension 6).

So instead of focusing on real-valued two-forms, we’ll focus on Λ−, elements
of which are called anti-self-dual two-forms. The canonical isomorphism between
Λ2T ∗M ↔ Λ− is given by

Λ2T ∗M 3 Xab ↔
1

2
(Xab + i∗Xab) = Xab ∈ Λ− .

The anti-self-dual forms enjoy many marvelous algebraic properties, especially with
regards to tensor products and their traces. For a list of such properties, see the
paper of Mars referenced before or Chapter 2 of the author’s PhD dissertation.
Those algebraic properties, however, will not need to be used in this note.

In the following we denote by

(15) Fab :=
1

2
(Fab + i∗Fab)

the anti-self-dual Ernst two-form. Observe that it is a closed two-form, and thus
Fabτa is also closed by the argument before, and on a simply-connected domain is
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given by the potential σ:

σ =
S − 1

2
− iΘ

2
(16a)

∇bσ = ∇b(
S

2
− iΘ

2
)(16b)

= −1

2
(Eb + iBb) = Fabτa .

We call σ the complex Ernst potential. (The normalization that <σ = (S − 1)/2
is to accommodate the physical assumption of asymptotic flatness: near “spatial
infinity”, τa is expected to approach a time translation, meaning that τ2 → −1.
The chosen normalization allows <σ → 0 at spatial infinity as a consequence.)

Next, one can observe that the Riemann curvature tensor can be viewed as a
symmetric map from Λ2T ∗M to itself. The Ricci decomposition of the Riemann
curvature tensor into

Riemann = Weyl⊕ traceless Ricci⊕ Scalar

is a purely algebraic decomposition on the space of such maps (see the handout for
week 2 of this class for more information). The property we will use is that for the
Weyl conformal tensor, we can define its left and right Hodge duals

∗Wabcd =
1

2
εab

efWefcd ; W ∗abcd =
1

2
Wabef ε

ef
cd

and verify that
∗Wabcd = W ∗abcd

which is equivalent to the statement that, viewing the Weyl curvature as a map
from two-forms to two-forms, it commutes with the Hodge star operator. In any
case, since the Hodge dual is well-defined (the left and right actions are equal), we
can define the anti-self-dual Weyl curvature as

(17) Cabcd :=
1

2
(Wabcd + i∗Wabcd) .

2.3. Principal null directions. Let Xab be a real-valued two-form on our four
dimensional Lorentzian manifold. Consider the eigenvalue problem for Xab. In the
Riemannian case, because the metric is positive definite, there exists no nontrivial
solutions to

Xabr
b = λra

since by contracting against the vector ra, we obtain

0 = raXabr
b = λg(r, r)

where the first equality follows from the anti-symmetry of two-forms. So either r
is the zero-vector or that it is in the kernel of X. Contrast to the case where the
metric is pseudo-Riemannian. The expression above tells us that either r is a null
vector, or it has eigenvalue 0.

We say that a null vector ra is a principal null vector of the two-form Xab if
it is an eigenvector. The eigenvalue equation can be evidently re-written in the
following form

(18) r[cXa]br
b = 0 .
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Now treating the Weyl curvature as a symmetric map from two-forms to two-
forms, we can also ask for the eigenvalues and eigenvectors. Naturally the eigen-
vectors and eigenvalues of the two-forms can now be lifted to the level of the Weyl
curvature, and thus we say that a null vector ra is a principal null vector of the
Weyl curvature tensor Wabcd if

(19) rbr[eWa]bc[drf ]r
c = 0 .

(Observe that, in form, (19) is a simple generalization of (18).) Since ra is a null
vector, it makes no sense to try to normalize it to unit length, so we can’t find
a preferred unit eigenvector. Hence it is traditional also to refer to principal null
directions instead of the principal null vectors. (Furthermore, the space of null
directions form a S2 bundle over the manifold, with a conformal structure induced
by the Lorentz transformations [i.e. Local diffeomorphisms]. So working, at least
locally, with elements in the space of null directions can be reduced to working on
CP1, where a lot of algebraic tools are available. This is sort of one way to look at
spinors in the 4-dimensional, Lorentzian case.)

Following is a theorem about the existence of principal null directions for two-
forms and Weyl-fields (resp. spin 1 and spin 2 fields). The two-form case is classical
and well-known in the physics literature. The Weyl-field case is due to Petrov.

Theorem 2. Let Xab be a real-valued two-form, and Wabcd be a (0, 4)-tensor sat-
isfying all algebraic symmetries of the Weyl conformal curvature, on a four di-
mensional Lorentzian manifold. Then at every point p, Xab has two (possibly
cöıncidental) principal null directions, and Wabcd has four (possibly cöıncidental)
principal null directions, unless the tensors vanish identically.

From the spinor point of view, the above theorem is simple to prove4. A quick
sketch: as we remarked above that the space of null-directions can be identified
with CP1. A (perhaps not-so-)simple calculation verifies that under this identifi-
cation (18) and (19) become a degree-two and a degree-four polynomial on CP1

respectively. By the fundamental theorem of calculus, the polynomials have two
and four zeros respectively when counted with multiplicity.

We say Xab is non-degenerate or non-null if the two principal null directions
are distinct. Using a bit of linear algebra, one sees that this is equivalent to its
anti-self-dual part having non-zero norm

X 2 = XabX ab 6= 0 .

Let la and ka stand for future pointing vector-fields corresponding to the two
distinct principal null directions, we can ask that they are normalized to have
laka = −1. Then we have the re-consitution formula for a non-null two-form:

(20) Xab =
1

2
(−X 2)1/2(lakb − kalb + iεabcdl

ckd)

where the square root is taken with respect to complex numbers, so there exists
two roots; therefore up to exchanging the labels la and ka, the above equation is
well-defined. From (20) it is also clear that

(21) X 2 = −4(Xabkalb)2 .
A similar statement can be had for a special type of Weyl fields. We say a Weyl

field is Petrov type D if it only has two distinct principal null directions, and each of

4See Penrose and Rindler, Spinors and space-time for example.
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the directions has algebraic multiplicity 2. Roughly speaking, one can think such
a Weyl field as a tensor product Wabcd ∼ Xab ⊗ Xcd of non-null two-forms. (A
more precise notion of this is given by the concept of a “symmetric spinor product”
defined in the author’s PhD thesis.) For a Petrov type D field, we can write down
an analogous formula to (20), which we will omit here. Analogous to (21), we see
that a Petrov type D field Wabcd is similarly characterized by its two principal null
directions and the scalar Cabcdkalbkcld (or C2) where Cabcd is the anti-self-dual part
of Wabcd.

2.4. The Schwarzschild metric. Let us now examine the Schwarzschild metric

(22) ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2 θdφ2) .

We take τa = ∂t, so F = 2M
r2 dt∧dr. Now notice that B = 0, since ∂t is hypersurface

orthogonal. Therefore the complex Ernst potential is given by

(23) σ =
S − 1

2
= −M

r
.

Now, a direct computation (which we’ll omit here) shows that

F2 = −4M2

r4
= − 4

M2
σ4(24)

C2 =
24M2

r6
=

24

M4
σ6 .(25)

What about the principal null directions? It is easy to see that Fab is non-null
and Wabcd is type D using spherical symmetry of the Schwarzschild metric. Simply
speaking, if ra is a vector defined at some point p such that it is a principal null
direction. Let O be an element of SO(3) such that its action on (M, g) fixes the
point p. Then the induced diffeomorphism is a map from TpM to itself. Consider
the vector (O∗r)a, it will necessarily be another principal null direction. Using the
algebraic classification theorem, one sees now that ra must be fixed by the action
of O. Therefore any principal null direction must either in the plane spanned by ∂t
and ∂r. Since Wabcd and Fab do not vanish identically (else we are in Minkowski
space), the only possible vectors which can be the principal null directions are (after
normalizing to kala = −1 and requiring them to be future pointing)

(26) k =
1√

1− 2M
r

∂t +

√
1− 2M

r
∂r , l =

1√
1− 2M

r

∂t −
√

1− 2M

r
∂r .

To see that both k and l are principal null directions, we use the fact that the
Schwarzschild metric also has a discrete time-reflection symmetry sending t↔ −t.
Under this change k ↔ −l. Hence the algebraic multiplicity of k and l as principal
null directions must be equal. Therefore Fab is non-null and Wabcd is type D.

2.5. Revised ansatz. In view of the special algebraic properties of the Schwarzschild
metric, we revise our initial guess and ask for a solution to the following problem

Problem 3. Find a four-dimensional Lorentzian manifold (M, gab) such that the
following conditions hold:

(1) (M, gab) is Ricci flat.
(2) It admits two Killing vector fields τa, ηa which commute ([τ, η] = 0) and

whose normal distribution is space-like and integrable.
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(3) The Ernst two-form is non-null; the Weyl curvature has Petrov type D; and
their principal null directions are aligned.

(4) The Ernst potential satisfies the following: there exists a real valued con-
stant M such that

F2 = − 4

M2
σ4 , C2 =

24

M4
σ6 .

(Recall that the real Ernst potential Θ is defined only up to a (real) constant.
The condition here should read to mean that there exists a normalization
for Θ such that the conditions described here holds. One sees that the only
possible normalization in the asymptotic flat case is by assuming Θ vanishes
at spatial infinity.)

In general, of course, it is not immediately obvious that a solution to Einstein’s
equation with all the listed properties exist. In practice, it suffices to try to calculate
under a contradiction is found, or until a self-consistent answer emerges. Here, we
use our amazing hindsight that the Kerr-metric actually satisfy the above conditions
in the formulation of the above problem. Of course, we claim that the asking of
the above question is not completely unreasonable in view of the properties of the
Schwarzschild metric.

3. Deriving the Kerr metric

In this section we show how the Kerr metric may be (in a large part) derived by
studying Problem 3.

The main result that we rely on is a lemma given in Mars’ 1999 paper5.

Lemma 4. We can define the real-valued function y and z by

−σ−1 = y + iz .

Then there exists a non-negative real number B such that B > z2, and

(∇y)2 =
y2 − 2y +B

M2(y2 + z2)
(27a)

(∇z)2 =
B − z2

M2(y2 + z2)
.(27b)

The proof is omitted here. I’ll give a basic sketch of the idea. Write k and l for the
two mutually-normalized vector fields corresponding to the principal null directions.
Consider the integral curves of k (or l respectively). By the Goldberg-Sachs theorem
the congruences defined by the family of integral curves are geodesic and shear
free. Observe also that the only components of Cabcd comes from the C(k, l, k, l)
component and others that can be related to it using the algebraic symmetries of
Weyl fields. Now consider the second Bianchi identity applied to Cabcd (it is here we
use the Ricci-flat condition: that the Weyl field obeys the second Bianchi identity),
one sees that this implies

εabcdl
akb∇cy = 0 , la∇az = ka∇az = 0 ,

5If you actually look at the paper, you’d see that there are some factors of 2 differences in a lot

of the statements. These are related to the fact that our definitions of anti-self-dual forms differs
by a factor of 2, and that our definitions of the Ernst two-form and the Ernst potential also differ

by a factor of 2.
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which, in particular, shows that ∇z is space-like. A rather complicated calculation
then shows that

M2(y2 + z2)(∇z)2 + z2

is constant, using the equation induced on σ from the second Bianchi identity.
Using that ∇z is space-like, we have that the constant B must be greater than or
equal to z2. The statement from (∇y)2 follows from the following observation:

(∇σ)2 = FabτaFcbτc =
1

4
F2τ2 = − 1

M2
σ4τ2 .

So

(∇ 1

σ
)2 = − τ2

M2
=

1 + 2<σ
M2

.

By simple algebraic manipulations from the definition of y and z, we obtain the
statement on (∇y)2.

By the above lemma and its proof, we see that at points where B 6= z2 and y2−
y+B 6= 0, y and z are independent, non-degenerate scalar functions. Furthermore,
as they are geometric quantities defined from objects that are symmetric under the
τ and η actions, we must have τ(y) = τ(z) = η(y) = η(z) = 0. So we can take y
and z to be coördinate functions on (subsets of) the surface orthogonal to τ, η.

We will make also the following guess: by the form of (∇z)2, we can reasonably

expect the change of variables z =
√
B cos θ may patch together where z2 = B

and resolve the coördinate singularity. Furthermore we will take a = M
√
B. In

addition, let r = My. Then we write

σ = − M

r + ia cos θ
=
−Mr + iMa cos θ

r2 + a2 cos2 θ
(28a)

⇒ S = 2<σ + 1 = 1− 2Mr

r2 + a2 cos2 θ
(28b)

⇒ Θ = −2=σ = − 2Ma cos θ

r2 + a2 cos2 θ
(28c)

(∇r)2 =
r2 − 2Mr + a2

r2 + a2 cos2 θ
(28d)

(∇θ)2 =
1

r2 + a2 cos2 θ
(28e)

so going back to ansatz (1), we have that

ds2 = −(1− 2Mr

r2 + a2 cos2 θ
)dt2 + 2Qdtdφ+Rdφ2(29)

+
r2 + a2 cos2 θ

r2 − 2Mr + a2
dr2 + (r2 + a2 cos2 θ)dθ2 .

Now look at (13), we can re-write it as

(30)
∂r(Q/S)

∂θ(Q/S)
= − V ∂θΘ

W∂rΘ
= − (r2 − a2 cos2 θ) sin θ

2r cos θ(r2 − 2Mr + a2)
.

Observe now that for K(r, θ) given by

(31) K(r, θ) :=
2Ma sin θ

(r2 − 2Mr + a2 cos2 θ)2
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we have that
∂

∂θ
[(a2 cos2 θ − r2) sin θK(r, θ)] =

∂

∂r
[2r cos θ(r2 − 2Mr + a2)K(r, θ)]

which implies that (with a rather non-trivial computation)

Q

S
=

2Mar sin2 θ

r2 − 2Mr + a2 cos2 θ
.

This in turn tells us that

Q =
2Mar sin2 θ

r2 + a2 cos2 θ
.

By examining (13) again, we can solve for R purely algebraically (a computation
I’ll omit here) to arrive at

R = sin2 θ

(
r2 + a2 +

2Ma2r sin2 θ

r2 + a2 cos2 θ

)
.

This gives us the Kerr metric.
Notice that, however, the computation of Q/S has the freedom to add a constant.

This reflects the fact that our computation, in the end, is completely local. In other
words, we know that on a local neighborhood the metric takes a given expression,
what we don’t know is whether the Killing vector field represented by ∂φ actually
has closed orbits! The freedom to add a constant factor to Q/S reflects the fact
that any constant coefficient linear combination

η̃ = c1τ + c2η

is again a Killing vector field which commutes with τ . So our local coördinate form
may be chosen initially such that ∂φ cöıncides with η̃, which does not have closed
orbits.

A proper argument to get rid of this degree of freedom requires a careful exami-
nation of the properties of the bifurcate event horizon. In particular, assuming the
space-time has a bifurcate event horizon, one can easily argue that both τ and η are
tangent to the bifurcate sphere, and in fact are multiples of each other. This allows
us to fix the unknown constant. This argument is similar to the assumption used
by Chandrasekhar in Mathematical Theory of Blackholes to analytically obtain the
Kerr metric.

Lastly, one may ask about the title of this lecture, in particular about the “cheat-
ing quite a bit” part. The algebraic conditions derived in Section 2 are actually not
too unreasonable. The primary “cheat” employed here is actually in the integrating
factor K(r, θ) in (31). Whereas with our perfect hindsight, we can easily find the
correct integrating factor, it is extremely difficult (insofar as the author’s limited
computational capabilities is concerned) to find the integrating factor just given
(30).
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