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Abstract

The uniqueness of the Kerr-Newman family of black hole metrics as stationary asymp-
totically flat solutions to the Einstein equations coupled to a free Maxwell field is a
crucial ingredient in the study of final states of the universe in general relativity. If
one imposes the additional requirement that the space-time is axial-symmetric, then
said uniqueness was shown by the works of B. Carter, D.C. Robinson, G.L. Bunting,
and P.O. Mazur during the 1970s and 80s. In the real-analytic category, the condi-
tion of axial symmetry can be removed through S. Hawking’s Rigidity Theorem. The
necessary construction used in Hawking’s proof, however, breaks down in the smooth
category as it requires solving an ill-posed hyperbolic partial differential equation.
The uniqueness problem of Kerr-Newman metrics in the smooth category is con-
sidered here following the program initiated by A. Ionescu and S. Klainerman for
uniqueness of the Kerr metrics among solutions to the Einstein vacuum equations.
In this work, a space-time, tensorial characterization of the Kerr-Newman solutions
is obtained, generalizing an earlier work of M. Mars. The characterization tensors
are shown to obey hyperbolic partial differential equations. Using the general Carle-
man inequality of Ionescu and Klainerman, the uniqueness of Kerr-Newman metrics

is proven, conditional on a rigidity assumption on the bifurcate event horizon.
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Chapter 1

Introduction

The existence of black holes is a fundamental feature of general relativity.! To wit,
the celebrated Schwarzschild solution was discovered mere months after Einstein
published his namesake equations describing celestial evolution. Yet the nature of
black holes has proven elusive since the very beginning of relativity theory. When
K. Schwarzschild wrote down the first non-trivial exact solution to Einstein’s equa-
tions in 1916, his goal was that of the gravitational field exterior to a stellar object
(35, 34]. It was not until J. Synge [41] and M.D. Kruskal [21] considered the “max-
imal extension” to the Schwarzschild metric that we began to properly interpret its
properties as a black hole. On the other hand, while many open questions still remain
in the study of black holes, the explosive growth of the field in the latter half of the
twentieth century elucidated features of these special solutions and directed research
toward the more pertinent problems.

The importance of black holes was underscored when R. Penrose demonstrated his
“singularity theorem”[29, 13]. Prior to that, singular black-hole solutions are some-
times dismissed as unphysical and only manifesting under symmetry assumptions;

this is largely because the known black-hole solutions at the time (Schwarzschild,

!The historical notes given herein are merely to illustrate and motivate the main problem under
discussion. Hence the interpretive history is opinionated, and the descriptive history incomplete;
the reader should not take the historical notes to be in any way authoritative.



Reissner-Nordstrom [31, 27], and Kerr-Newman [20, 26]) are all symmetric exact
solutions. In view of Y. Choquet-Bruhat’s local-existence theorem for the Cauchy
problem in general relativity [11, 5], Penrose’s singularity theorem showed the exis-
tence of black holes to be “generic” (quite recently D. Christodoulou went further and
showed that dynamical formation of black holes is also generic [6]). The study of black
holes gained further prominence through investigations of the long-time-existence as-
pect of the Cauchy, or initial value, problem. Einstein’s equations are known to be
reducible to a system of quasilinear wave equations (it is in this formulation that
Choquet-Bruhat proved local existence), and hence some wave-like or dispersive phe-
nomena are expected?. Precisely this was shown by H. Bondi et al.[2] and R. Sachs
[33] via a mass-loss formula that described energy being carried away from a local
source through gravitational radiation. For dispersive or wave-type systems, it seems
reasonable to expect that a solution consists of two parts: a localized stationary part
where attractive nonlinearities (e.g. gravity) overcome the dispersive tendencies, and
a radiative part which “decays” over time (the archetypal example for this splitting
being the Korteweg-de Vries equation; see Chapter 4 in [42] and references therein).
Whether such a characterization (a property technically termed “scattering”) actu-
ally holds is the subject of active research, and considerations of the “stationary part”
brings us back to the subject of black holes.

As mentioned above, the explicit closed-form black-hole solutions are all highly
symmetrical. In fact, the Kerr-Newman family of solutions (which subsumes the
Schwarzschild and Reissner-Nordstrém metrics) have a time symmetry that qualifies
them as stationary (see Section 1.3 for definitions). Thus they are candidates for the
possible final state of evolution for a given space-time. The natural question to ask

then, is

Problem 1.0.1. Does the Kerr-Newman family constitute the only candidates for the

2The subject of gravitational waves was (and perhaps still is) a contentious one. The reader is
referred to the excellent book by D. Kennefick [19] for a more complete history.



possible final states?

The present work is an effort to address the above problem. Written as such,
of course, the question is not well-posed mathematically. In the remainder of this
chapter, some technical definitions will be made and, in Section 1.4, a more precise

statement of the problem under consideration will be given.

1.1 The Einstein-Maxwell equations

First it is necessary to describe the physical system: what is a space-time, what sorts

of matter are considered, and what are the physical laws of evolution?
Definition 1.1.1. A space-time shall refer to a pair (M, gap) such that:
o M is a four-dimensional, paracompact, orientable, smooth manifold.

® gu is a smooth Lorentzian metric on M. In other words, gq is a smooth (0,2)-
tensor field, is symmetric and non-degenerate, and has signature (—,+,+, +).

a

g stands for the metric inverse. All index-raising and -lowering will be with

respect to g% or g, as appropriate.

o M is time-orientable relative to the metric gq (in other words, there ezists a

continuous, globally non-vanishing vector field Ty such that guTETE < 0).
The only allowed matter field is a Maxwell field which describes electro-magnetism.
Definition 1.1.2. A Maxwell field or Maxwell two-form shall refer to a real-valued,

smooth two-form Hg, on M, such that Mazwell’s equations are satisfied:

V[a[{bc} =0

VHp, =0



where V, is the Levi-Civita connection for the metric gq, brackets [-] around indices
denote full anti-symmetrization, and Einstein’s convention of contracting repeated

indices is in force.

Definition 1.1.3. The triple (M, gap, Hap) is said to be a solution to the Einstein-
Maxwell, or electro-vac, system if Hy, is a Maxwell field and Einstein’s equations are
satisfied:

Rap — %Rgab = Tw

where Ry is the Ricci curvature of the metric gq, R = g™ Ray is the scalar curvature,
and Ty, = 2H . Hy¢ — %gabHcdHCd is the rescaled stress-energy tensor for the Mazwell
field.

By construction, the stress-energy tensor of the Maxwell field is trace-free g, 7% =
0. By taking the trace of Einstein’s equations, the scalar curvature vanishes. Thus a

solution to the Einstein-Maxwell system must have R = 0 and Ry, = Ty.

1.2 Causal geometry

The Lorentzian metric g, imposes a structure on the tangent space T, M at any
point p € M. With a suitable choice of basis vectors, 7),M can be identified with the
Minkowski space, whence it is possible to decompose 7, M into the disjoint union of

T, MUST,M U™ ,M, where elements of
oM = {v* € TyM|gapv™® < 0} (1.1a)
are said to be time-like, elements of

T,M = {v* € T,M|gapv®v® > 0} (1.1b)



are said to be space-like, and elements of

"T,M = {v* € TyM|gapv™v” = 0} (1.1c)

are said to be light-like or null.
It is clear from the Minkowski-space picture that "1, M is a double-cone, and
that 'T,, M has two connected components. By the assumption that (M, gup) is time-

orientable, there exists a continuous choice

ETM = {v* € 'T,M| + gupv® Ty < 0} (1.2)

where T, M consists of the future-pointing time-like vectors, and "7, M of the
past-pointing time-like vectors. Similarly "7, M \ {0} can also be decomposed into
"ET,M.

A C" curve 7y in M is said to be time-like (similarly space-like or null) if its tangent
vector at every point is time-like. The curve is said to be causal if its tangent vector
at every point is either time-like or null. Notice that for a given parametrization of
a causal C! curve 7, its time orientation is fixed, and reversing the parametrization
gives a reversed time orientation.

Now, given two points p,q in M, p is said to be to the future of ¢, and written
p = q if there exists a future pointing causal C! curve v : [0,1] — M with v(0) = ¢
and (1) = p; the strict inequality p > ¢ is taken when ~ is strictly time-like. (For
properties of these causal relations, see Chapter 14 in [28].) Let A be a non-empty

subset of M, its future set is defined to be

I"(A)={peM|Fge A:q<p},



and its causal future set is
JHA) ={peM|Fgec A:q=<p}.

The past sets I~ and J~ can be defined analogously. The notation I(A, B) (similarly
J(A, B)) is used to mean I*T(A) NI~ (B).
To rule out pathological examples, the following condition is often applied to

space-times

Definition 1.2.1. The space-time (M, gu) is said to be strongly causal if given
any point p € M and a neighborhood U of p, it is possible to find a neighborhood

p €V CU such that every causal curve with endpoints in V' lie entirely in U.
A stronger condition is

Definition 1.2.2. An open subset Q C M is said to be globally hyperbolic if it is

strongly causal and that for any two points p,q € Q, the set J(p,q) is compact.
The following definition is standard

Definition 1.2.3. A subset ¥ of M is said to be a Cauchy hypersurface if every

inextendible time-like curve meets ¥ exactly once.

It is well-known (see Lemma 14.29 in [28]) that a Cauchy hypersurface is a closed
achronal topological hypersurface and is met by every inextendible causal curve ex-
actly once. It is also well-known (see Corollary 14.39 in [28]) that a sufficient condition

for a space-time to be globally hyperbolic is for it to have a Cauchy hypersurface.

1.3 Stationary black hole solutions

The classical definition of a general black hole (see [13], Chapter 9 for an exam-

ple) depends on the regularity concepts of asymptotic predictability (and associated
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asymptotic simplicity). Since this work focuses only on stationary space-times, we
will forgo the customary definition of black holes from null infinities, and instead use
a definition more adapted to the work at hand [12] (see also [8]).

A space-time (M, gqp) is said to be stationary asymptotically flat if it admits a one
parameter group of isometries ®; and contains what is called an asymptotic end M
on which the generators of ®; are uniformly time-like. M is required to be an open
submanifold of M such that M> = U;cg®;> where ¥ is a space-like hypersurface
diffeomorphic to R? minus a ball. In the coordinates ¢ x R3 thus induced, g, satisfies
certain decay conditions as one approaches infinity on R3 (which is automatically
uniform in ¢ by the isometry assumption; the decay conditions will be made more
explicit in Chapters 3 and 4). The decay condition essentially states that the metric
approaches that of the Minkowski metric near infinity; the exact rate of decay is not
important in this section. For a more precise definition of stationary asymptotically
flat, see Definition 2.1 for “(k, «)-asymptotically stationary” in [8]. In the Einstein-
Maxwell case, we will also require that the Maxwell field H,, inherits the symmetry
(i.e. @ Hy = Hyy)?, and that it satisfies suitable decay conditions.

Assuming the space-time is globally hyperbolic, we consider the following sets
B=M\I"(M>®)and 0 =M\ IT(M>). B and 2 are called the “black hole”
and “white hole” regions relative to the end M>. We also write © = M \ (B U 20)
for the domain of outer communication. The future and past event horizons H* are
defined to be the boundaries of 8 and 20U respectively. Since the space-time is globally
hyperbolic, $* are achronal sets (any two points cannot be connected by a time-like
curve) generated by null geodesic segments.

The interpretation of the above definitions is that the black/white hole regions
have interesting causal relations to the exterior region. Since the causal future J*(8)

of the black hole is disjoint from M*®°, it is impossible to send a signal from inside

3Unlike in the Einstein-scalar-field case, this condition is not automatically satisfied. Some anal-
ysis to non-inheriting case was performed by Tod [44].



the black hole to an observer outside the black hole. Similarly, it is impossible for an
observer inside the white hole to receive signals from outside the white hole. In other
words, a black hole region is one from which light cannot escape while the white hole
region is one into which light cannot penetrate.

The most well-known family of exact, closed-form, black-hole solutions is probably
the Kerr-Newman family. In Boyer-Lindquist coordinates, the Kerr-Newman line

element ds? and the associated vector potential A for the Maxwell field are given as

2Mr — ¢> 2a(2Mr — ¢*) .
ds* = — (1 — ————— | dt* = = ""——— " sin? fd¢pdt
§ ( 72 + a? cos? 6) 2+ a2cos?f ¢

a*(2Mr — ¢°)

+sin?6 [ r* +a* +
( 72 + a%cos?

sin? 6) d¢? (1.3)
N r® + a? cos® 0

r2+ a2 —2Mr + ¢2

qr grasin®@ '

r? 4+ a? cos? 0 r2 4+ a?cos2f "’

dr® + (r* 4+ a® cos? 0)d6” |

A= (1.4)

it represents a charged, spinning black hole. If we set the charge parameter ¢ = 0,
we reduce to the Kerr subfamily. If we set the angular momentum parameter a =
0, we reduce to the Reissner-Nordstrém family. And if both charge and angular
momentum vanishes, the black hole described is Schwarzschild. The free parameter
M represents the mass of the black hole, and it is generally assumed, based on
physical interpretations, that a® + ¢? < M?; in the case of equality the black hole is
said to be “extremal”. If we set r = M + \/m, we see that the metric
becomes singular in these coérdinates: this is a codrdinate singularity (not a physical
singularity) representing the event horizon of the metric.

The properties of stationary black holes, especially those of their event horizons,
are well-studied. The topological uniqueness of black holes (see, for example, [7])
guarantees that for a stationary asymptotically flat black hole solution to the Einstein-

Maxwell equations, the domain ® is simply connected, and each connected component



of T must have topology S? x R (in this work we shall assume that there is only
one connected component of the horizon). Furthermore, from the definitions above,
it is clear that $T are invariant under the flow ®,. This immediately implies that
the associated Killing vector field must be tangent to the event horizon. If we further
assume that the only fixed points of <I>t|5’)i live on $y := HT N H~, then the Killing
vector field must be either null or space-like on $*. In the case the Killing vector
field is null on the horizon, Sudarsky and Wald [40] showed that the space-time must
be static, and hence Reissner-Nordstrom (see the next section). In this work we will
only consider the case when the Killing vector field is space-like somewhere on the
horizon. We also make the assumption that the future and past event horizons H*
are smooth null hypersurfaces that intersect transversely at $)o. This assumption
is related to the non-degeneracy of the event horizon [4] which is associated to the
non-vanishing of surface gravity [45]. Physically this assumption may be justified by
the expectation that degenerate event horizons correspond to extremal black holes
(those for which the sum of the normalized angular momentum and charge equals
the mass), which are thought to be unphysical. Another property of stationary black
holes is Hawking’s area theorem [13], which tells us that the null mean curvature for
$* vanishes (for some consequences of this see Section 2.5). The precise formulation

of the assumptions mentioned here will be given in Chapter 4.

1.4 The problem of uniqueness

A large open problem in the classical study of black holes is the Final State Conjec-
ture, which contains as part of it Problem 1.0.1 mentioned above. The conjecture is
extremely open, in the sense that even a reasonable formulation of the conjecture is

unknown. Roughly speaking, one way to state the conjecture is

Conjecture 1.4.1. [Final State] For a generic asymptotically flat, globally hyper-



bolic solution to the FEinstein-Mazwell equation (possibly coupled with other fields),
we can find a foliation ¥, such that the solution, when restricted to X;, converges to

a superposition of multiple Kerr-Newman black holes as t — oo.

It is entirely unknown what “generic” means, or whether actually other fields are
allowed, or even how to pick a foliation (whether the foliation is by a time-function
or by asymptotically hyperbolic slices or some more exotic construction), or in what
sense can we take the convergence. As part of the effort to better understand the
conjecture, two natural, possibly easier, problems are asked. One is Problem 1.0.1

above; the other is the problem of nonlinear stability of black holes

Problem 1.4.2. Considering the Cauchy problem in general relativity. If one pre-
scribes an initial data set (see [45, 13] for a description of the Cauchy problem) that
1s close to a Kerr-Newman black hole, will the evolution converge toward a possibly

different Kerr-Newman black hole?

As described in the opening paragraphs, the existence of gravitational waves seems
to lend a mechanism for radiative decay of solutions, and hence the expectation is
that the nonlinear stability problem will be answered in the affirmative sometime in
the future.

Let us now focus on the problem of uniqueness. From a physical perspective,
it is natural to expect that candidates for the final states are stationary solutions.
Unfortunately, unlike classical evolution equations, Einstein’s equation does not admit

a simple globally, canonically, defined time. One cannot simply prescribe

%Sys’cem =0

and solve an elliptic system. A more geometric prescription would be to “find a
solution to the Einstein-Maxwell system that admits a globally time-like Killing vector

field.” In view of known closed-form exact solutions, however, this prescription is
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overly restrictive, as in the Kerr-Newman family there exists the ergoregion, which
is contained in the physical region ®, where the global Killing vector field becomes
space-like. (Observe that in the Boyer-Lindquist cordinates (1.3), the ergoregion is
defined by

M+ /M2 —a2cos?f — g2 >r > M+ /M2 — a2 — ¢2

and pictorially is an oblate spheroidal region surrounding the event horizon.) Hence
we are forced to adopt the formulation for stationary asymptotically flat as described
in the previous section. That the symmetry is only time-like at a neighborhood of
infinity implies that reducing the equations by this symmetry will not lead to a elliptic
system, and hence such a naive argument will not yield uniqueness of solutions.
Symmetry assumptions, however, can be useful in establishing uniqueness of so-
lutions. As mentioned before, the closed-form metrics of the Schwarzschild, Reissner-
Nordstrom, Kerr, and Kerr-Newman families are all highly symmetrical. In par-
ticular, the former two are static (possess a stationary Killing vector field that is
hypersurface-orthogonal; cf. Frobenius’ theorem) and spherically symmetric (admit
an action of SO(3) whose orbits are space-like); the latter two are stationary and
axially symmetric (admit an action of U(1) with space-like orbits, which commutes
with the stationary symmetry). Historically the first non-trivial uniqueness result
in general relativity is Birkhoff’s theorem (which was known since the 1920s [18]),
which states that any spherically symmetric solution to the Einstein vacuum equa-
tions must be the Schwarzschild solution. In particular, spherical symmetry is enough
to imply staticity. This result is later generalized to the electrovac system for the
Reissner-Nordstrom solutions. Birkhoff’s theorem is possible because the spherical
symmetry reduces Einstein’s equation to a problem in 1 + 1 dimensions, where the

Lorentzian geometry automatically imposes many constraints to reduce the problem

11



to essentially ordinary differential equations which can be directly integrated. The
next step forward came in the 1960s, when W. Israel established [16, 17] what is,
loosely speaking, the converse of Birkhoff’s theorem: a static, asymptotically flat
space-time that is regular on the event horizon must be spherically symmetric. Is-
rael’s theorem exploited the fact that a static space-time does not admit an ergoregion
(this roughly follows via a maximum principle on the Lorentzian norm of the static
Killing vector field: it vanishes on the black hole boundary and is harmonic where
it does not vanish, so it must be time-like in all of the exterior region), and thus
Einstein’s equation reduces to a degenerate elliptic system (degenerate near the hori-
zon where the Killing vector field becomes null) for which uniqueness can be shown.
B. Carter’s 1973 Les Houches report [4] finally sparked an attempt to similarly char-
acterize the Kerr and Kerr-Newman families: he showed that asymptotically flat, sta-
tionary, and axially-symmetric solutions to the vacuum (electrovac) equations form
a two-parameter (three-) family. Between D.C. Robinson [32], P.O. Mazur [24], and
G.L. Bunting [3], Carter’s program was completed and the Kerr and Kerr-Newman
families are established as essentially the unique solutions to the asymptotically flat,
stationary, axially-symmetric Einstein’s equations. As explicated by Bunting’s work,
the assumption of axial symmetry is essential in Carter’s program: while the sta-
tionary Killing vector field is no longer time-like everywhere in ®, the span of the
stationary Killing vector field and the axial symmetry is Lorentzian. In other words,
there is a Riemannian structure on the space of orbits under the Abelian symmetry
group generated by the stationary isometry and the axial symmetry. Under this iden-
tification, the Einstein-Maxwell system is reduced to a harmonic map with singular
boundary conditions, for which uniqueness follows from elliptic theory.

At this point, the powerful results about the event horizons of stationary black
holes came into play. Hawking, starting from the area theorem, deduced that on the

event horizon of an arbitrary stationary black hole there must exists an axial symme-
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try [13]. If one is allowed to then assume that the space-time is real-analytic, one can
in principle “solve” the Killing equation to extend the axial symmetry to the entire
space-time. By appealing to the Carter-Robinson-Mazur-Bunting theorem, he is able
to conclude the famous No Hair Theorem, that any real-analytic nondegenerate sta-
tionary asymptotically flat solution to the Einstein-Maxwell system with a connected
event horizon must be a non-extremal Kerr-Newman black hole.

Hawking’s result, however, strongly depends on the analyticity of the space-time,
which is not completely a priori available. Indeed, in view of the work of H. Miiller
zum Hagen [25] and P. Tod [43], we can expect that in the portion of ® where the
stationary Killing vector field is strictly time-like, a solution to the Einstein-Maxwell
system is analytic in harmonic coérdinates. The argument, which depends on elliptic
regularity, breaks down inside the ergoregion. In view of this, it is desirable to be
able to obtain a No Hair Theorem without the analyticity assumption. To address
this issue, A. Ionescu and S. Klainerman [14, 15] initiated a program to study the

uniqueness problem in the smooth category.

Problem 1.4.3. Consider a smooth solution of the Einstein-Maxwell equations. As-
sume the space-time is stationary asymptotically flat and globally hyperbolic, and that
the event horizon is connected and nondegenerate. Can we say that the space-time

must be isometric to a Kerr-Newman solution?

In the vacuum case, Ionescu and Klainerman gave a conditional answer in the
affirmative to the above problem. The principal argument is as follows: the bifurcate
event horizon is a characteristic hypersurface for the wave operator. While for the
exterior problem, the characteristic initial value problem is ill-posed, often one can
obtain uniqueness of solutions should they exist. The Einstein-Maxwell system can
be written as tensorial wave equations for the curvature tensor and the Maxwell two-
form. The hope then is that for a given initial data on the bifurcate event horizon, one

can use Carleman type estimates to show that there can be at most one solution with

13



those data. Then if one can show that the initial data corresponding to Kerr-Newman
space-time is the only reasonable initial data (which one can heuristically hope for
because Hawking’s result on the bifurcate event horizon can still hold without using
the analyticity assumption). This last step, however, cannot be completed. Instead,
one can show that the results arising from the study of the event horizon allows
one to reduce the uniqueness of initial data to scalar conditions on the bifurcate
sphere, which while we hope can be removed, is currently necessarily prescribed as
an assumption. For the case when the Maxwell field is assumed to vanish identically,
Ionescu and Klainerman carried out the above program. In other words, Ionescu and
Klainerman’s result showed that, in the vacuum case, Problem 1.4.3 can be reduced
to asking whether the bifurcate sphere of a stationary asymptotically flat solution
must agree with the bifurcate sphere of a Kerr space-time.

In this work, we extend Ionescu and Klainerman’s result to cover the Einstein-

Maxwell case. In particular, we show the following

Theorem 1.4.4. Consider a smooth solution of the Einstein-Mazwell equation; as-
sume the solution is stationary asymptotically flat and globally hyperbolic, and that
the event horizon is connected and nondegenerate. Furthermore assume that the bi-
furcate sphere $o of the solution satisfied some rigidity assumptions that is known to
be satisfied by a Kerr-Newman space-time, then the domain of outer communication

D of the solution is everywhere locally isometric to a Kerr-Newman space-time.

The precise conditions for the theorem and the rigidity assumption on the bifurcate

sphere will be laid out in Chapter 4.

1.5 Organization and overview of the present work

In Chapter 2, we review some well-known and some not-so-well-known facts about

Lorentzian geometry in four-dimensions in the presence of a stationary Killing vector
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field. In particular, we recall the notion of anti-self-dual two-forms and anti-self-dual
Weyl fields, upon which language the main hypotheses of the various theorems in this
work is stated. We also recall the tetrad formalism of Ionescu-Klainerman, which is
a computational aid similar to the Newman-Penrose formalism, but slightly better
adapted to the natural symmetry of swapping the two principal null vectors in a
space-time with Petrov type D. In the sequel, the anti-self-dual forms and the tetrad
formalism consist the main tools for calculating tensor (or invariant) and scalar (or
frame-dependent) expressions respectively.

In Chapter 3, we extend a result of Mars [22] to the electrovac case. Mars obtained
a tensorial characterization of the Kerr space-time. As a starting point, consider the
Minkowski space as a solution to the Einstein vacuum equations. By the vacuum
equations any solution is automatically Ricci flat. To characterize Minkowski space, it
therefore suffices to require the Weyl conformal tensor to vanish. Furthermore, such a
characterization is local: given a solution of the Einstein vacuum equations, supposing
that the Weyl conformal tensor vanishes on an open set U, then we can conclude that
U is locally isometric to a subset of Minkowski space. Similarly, to characterize Kerr
space-time, Mars showed that it suffices to ask for an algebraically-Weyl field (by
which we mean a (0,4) tensor field that is trace-free in all pairs of indices, that is
antisymmetric in the first two and the last two, and is symmetric when considered
as a map from two-forms to two-forms) to vanish. The important feature is that
this algebraically-Weyl field can be constructed invariantly using the conformal Weyl
curvature and the stationary Killing vector field. Therefore one obtains a tensorial
characterization of Kerr space-times among all stationary solutions to the Einstein
vacuum equations. Furthermore, this characterization is essentially local [23]. In
the work of ITonescu-Klainerman, it is by showing that this characterization tensor
vanishes identically that they show the space-time is locally isometric to Kerr.

In this work, a tensorial characterization for Kerr-Newman space-time among
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stationary solutions to the Einstein-Maxwell equations is constructed. Because of the
inclusion of the matter field, it is necessary that the characterization uses two tensors:
an algebraically-Weyl one to control “gravitational waves” as in the Kerr case, and
a two-form to control the “electromagnetic waves” which is the new feature of this
characterization. The two tensors are shown to be invariantly constructed from the
Weyl curvature tensor, the Maxwell field of the solution, and the stationary Killing
vector field. And the characterization is again, essentially local (see Theorem 3.2.1).

In Chapter 4, we run through the same argument as in Ionescu-Klainerman [14].
First we show that the characterization tensors for the Kerr-Newman space-time obey
nonlinear wave equations through a long and tedious computation. Next we show that
the two tensors can be made to vanish on the bifurcate event horizon provided certain
scalar conditions on the bifurcate sphere is satisfied. An application of lonescu and
Klainerman’s generalized Carleman inequality then shows that the two tensors must
vanish in the domain of outer communication. To apply the Carleman estimate,
however, one needs a set of conditional pseudo-convex weights. And for this it is
crucial that the characterization of Kerr-Newman space-time is essentially local: we
can use a bootstrapping procedure to control the pseudo-convex weights. Once a
neighborhood is shown to have vanishing characterization tensor, the local isometry
allows us to get a better control on the pseudo-convex weights than we assumed. The
standard method of continuity then allows us to conclude that the set on which the
characterization tensor vanishes is both open and closed in ®, and hence is the entire
domain of outer communication.

Much of the material in Chapters 2 and 3 have been accepted for publication in
Annales Henri Poincaré. Most of the material in Chapter 2 are previously known,
though the presentation may be different; the main exception is Section 2.4 which
generalizes the lonescu-Klainerman tetrad formalism to include Ricci terms. Theorem

3.5.1 is a recent addition, and has not appeared in print prior. Chapter 4 is entirely
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new, insofar as any generalization of a previously known result can be.

1.6 Notational conventions

Lastly, we define the following notational shorthand for Lorentzian “norms” of tensor

fields. For an arbitrary (j, k)-tensor Z,;*";"/| we write

7o ’
2 _ b1 b} aias...aj 910505
Z - gala'lga2a/2 “ .. gaja;.g 1... gbkb;chlebk Zb,lbéb;C

for the inner-product of 7~ with itself. Note that in the semi-Riemannian setting,

Z? can take arbitrary sign.
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Chapter 2

Geometric background

In this chapter, some previously-known geometrical results are summarized, and the

results of some calculations (which will be used in the sequel) are recorded.

2.1 Anti-self-dual two forms and curvature decom-
position

As is well known, the Riemann curvature tensor Rg.q for an n-dimensional semi-

Riemannian manifold admits a decomposition

1
Rabcd = Wabcd + —(9 O S)abcd +

n—2 ) (9 ® g)aved ; (2.1)

2n(n —1

where Sy, = Rap — %Rgab is the traceless Ricci tensor, and @® is the Kulkarni-Nomizu

product taking two (0, 2)-tensors to a (0, 4)-tensor
(h D k)abcd = hackbd + hbdkac - hadkbc - hbckad . (22)

Notice that the Kulkarni-Nomizu product of two symmetric (0, 2)-tensors automati-

cally satisfies all algebraic properties of the Riemann curvature tensor.
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This decomposition is fundamentally related to the invariants of the curvature
tensor under (indefinite) orthogonal rotations in the tangent space; in four dimensions
it is also crucially related to self-dual and anti-self-dual two forms. These two facts
were first clarified by I.M. Singer and J.A. Thorpe in the Riemannian case [38], though
their results also can be adapted to the semi-Riemannian situation with minimal

changes !. Here two of their main results are reproduced.

Theorem 2.1.1 (Singer-Thorpe 69 A). Let (V, gu) be a scalar product space (gap 1S a
symmetric, non-degenerate, bilinear form on'V ), and A* the space of (antisymmetric)
two-vectors. Let Rapeq be a (0,4 )-tensor corresponding (via gap) to a symmetric map

A? — A2. Then there exists a decomposition
Rupea = Ry + Ry + Ry + Ry

where the RY 4 are mutually orthogonal under the norm (R, S) = Rpea S where

abc
ndez-raising 18 relative to gu,. Furthermore, Rg,)cd 1s the only one not satisfying the
first Bianchi identity, R( )d is the only one with non-zero scalar curvature (the double

trace Rabcdg cgb =0 if i #2), and Rabcd 1s the only one with non-vanishing traceless

Ricci part.

In particular, for a Riemann curvature tensor, Rabcd =0, Rabcd n(n 17 (9D g)aved;
3
R((J,b)cd 5(9 © S)avea, and Rl = Wabea:
In four-dimensional setting, the Hodge star operator * also is a symmetric map

from A2 to itself. The decomposition in the above theorem satisfies the following,

Theorem 2.1.2 (Singer-Thorpe '69 B). The linear maps given by Ri?cd are charac-

terized by:

!The differences introduced by a semi-Riemannian setting can be solved with, for instance,
Lemma 3.40 in [28]; see the proof of Proposition 3.41 ibid (and compare to the proof in the Rieman-
nian case) for an illustration.
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° Rglb)cd is a multiple of the volume form (in other words, as a linear map from A*

to itself, it is a multiple of the Hodge star *);

) R((j,)cd is a multiple of identity map from A? to itself. In coordinates this means

it 1s a multiple of (9 ® g)abed-
° R((l‘zld anti-commutes with *;

o W

wbeq COMMutes with x, and its trace and the trace of its composition with x both

vanishes.

2.1.1 Complex anti-self-dual two forms

On a four dimensional Lorentzian space-time (M, g4), the Hodge-star operator  :
A*T*M — A?T*M is a linear transformation on the space of two-forms. In index

notation,

1
cd
ab — _Eabch )

2

*

where €geq 18 the volume form and index-raising is done relative to the metric g.
Since the metric signature is (—, 4, +, +), the double dual is seen to be xx = — Id,
which introduces a complex structure on the space A?°T* M. By complexifying and
extending the action of * by linearity, A?7T* M ®g C can be split into the eigenspaces
A+ of * with eigenvalues £i. An element of A?T* M ®p C is said to be self-dual if it
is an eigenvector of x with eigenvalue ¢, and anti-self-dual if it has eigenvalue —i. It

is easy to check that given a real-valued two-form X, the two-form
1 "
Xab = i(Xab +1 Xab) (23)

is anti-self-dual, while its complex conjugate X, is self-dual.
In the sequel, elements of A?T* M shall be written with upper-case Roman letters,

and their corresponding anti-self-dual forms with upper-case calligraphic letters. The
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projection

Xab = Xab + ')Eab

is a natural consequence of (2.3).

Following are some product properties [22] of two-forms:

XYy =" Xo Y = %gachdYCd : (2.4a)
Xt Xp¢ = igachd*XCd , (2.4b)

oV Vs = S g XV (2.40)
X, ¢ = igabxcdxcd , (2.4d)

Xoe X" — Xpe X =0, (2.4e)
XY™ = XV (2.4f)

XY =0 (2.4g)

Now, the projection operator Py : A?’T*M ®r C — A4 can be given in index

notation as

(P-l—X)ab = :Z_'abchCd s
(P—X)ab = ZabchCd s

1 )
where Iabcd = Z(gacgbd — GadGbc + ZEabcd) .

With the complex tensor Z,;.q4, it is possible to define

1

~ 1 1
(X®y)abcd = §Xabycd + §yab')(cd - gIabchefyef ’ (25)

a symmetric bilinear product taking two anti-self-dual forms to a complex (0,4)-

tensor. It is simple to verify that such a tensor automatically satisfies the algebraic
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symmetries of the Weyl conformal tensor: i) it is antisymmetric in its first two,
and last two, indices (X®@Y)aped = — (X RV )pacd = — (X D) apae ii) it is symmetric
swapping the first two and the last two sets of indices (X®@V)apea = (X RY)cdap iii)
it verifies the first Bianchi identity (X®))apea + (X@V)pead + (X W) eapa = 0 and
iv) it is trace-free (X®Y)apeag®® = 0. For lack of a better name, this product will
be referred to as a symmetric spinor product, using the fact that in a representation
using spinor coordinates Xy, = fapeap and YV = hapeap (where fap = fpa, and

similarly for hap), the product can be written as

(X@V)abea < fraphepyeasecp
where (-) denotes complete symmetrization of the indices. Notice that by definition

(P_(XRY)P-)abed = (XY )abed -

2.1.2 Complex curvature tensor

In view of Theorem 2.1.2, the derivations in Section 2.1.1 naturally leads to the notion

of a complex curvature tensor. Consider X € A_, the identity

(1%

_Z.R((LJI'))CdX = joz;).:d*)( = 9

EabcdR(j)Cdeerf _ (_1)63j*(R(j)X>ab

gives that R(%)Cd maps Ay — Ay and A — A_if j € {1,2,4}; and A_ — A, and
vice versa if j = 3.
Hence the following decomposition of the Riemann curvature tensor relative to

the eigenspaces of * is obtained:

Rabcd = (Pprf)abcd + (PJrRPJr)abcd + (7)7 RPJr)abcd + (7)+R7Df)abcd )
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where the first two terms form R((;))cd + Rii)cd + Rgzld and the last two terms form
R((I‘z)cd. From the coordinate expressions of Py in terms of Z,p.q, it is clear that the
first two terms are complex conjugates of each other, and similarly the last two terms.

A simple computation shows that, in terms of (2.1),

1 ) R
(P— RP—)abcd = §(Wabcd + §EabefWefcd) + Ezabcd )

1 e
(P+RP_)apea = Z_l[(g O S)abed + 1(Sa €ebea + Sbeafcd)] .
In the sequel, Cypeq Will be used to denote the complex Weyl tensor
1 ) of
Cabcd = §(Wabcd + _EabefW cd) . (26)

2

Now, in the case of the Einstein-Maxwell equations, a solution must satisfy R = 0

and Sy, = Ry = T, The tensor
]. . e f
8abcd = Z[(g W T)abcd + Z(Ta €ebed + Tb 6afcd)] (27)

together with Cup.q completely specifies the Riemann curvature tensor. Note also that
in terms of the complexified Maxwell field H,, = %(Hab + i*H,p) the stress-energy

tensor can be written as
Toy = 4HaeHy = 4H Hae - (2.8)

It is with this form most of the subsequent computations will be made.
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2.2 Killing symmetry

Given (M, gq) a smooth, four-dimensional Lorentzian manifold, and assuming that

it admits a smooth Killing vector field t*, the Ernst two-form can be defined by
Fab = vatb - vbta - 2vatb 5 (29)

the second equality being a consequence of the Killing equation. As is well-known,

the Ernst two-form satisfies
V. Fu=2V.Vaty = 2Rgeapt® . (2.10)

This directly implies a divergence-curl system (in other words, a Maxwell equation

with source terms) satisfied by the two-form

v[(:Fwab} =0,

VeF,, = —2Rgut¢ .

Here one of the primary differences of the present work from [22] is seen: a space-
time satisfying the Einstein vacuum equations is Ricci-flat, and the above implies
that the Ernst two-form satisfies the sourceless Maxwell equations. In particular, for

the vacuum case,

V[c~¢.ab] =0,

and a calculation then verifies that

V[C(.'Fa]btb) =0.
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Thus an Ernst potential ¢ is constructed for
VaO' = fabtb

if the space-time is assumed to be simply connected.

In the non-vacuum case that this paper deals with, this construction cannot be
exactly carried through. However, the essence of the construction above is the follow-
ing fact disjoint from the semi-Riemannian structure of our setup: consider a smooth
manifold M, a smooth differential form X, and a smooth vector-field v. Consider the
Cartan relation

L, X =i,0dX +doi, X

where L, stands for the Lie derivative relative to the vector-field v, and i, is the
interior derivative. If X is a closed form, and v is a symmetry of X (i.e. £,X = 0),
then 7,.X must be closed also.

Applying to the Einstein-Maxwell equations, take X to be the anti-self-dual
Maxwell form

1
Hab = é(Hab + i*Hab) y (211)

which by Maxwell’s equations is closed. The vector-field v is naturally the Killing
field t*, and therefore the complex-valued one-form H,,t® is closed, and if M is taken
to be simply connected, also exact. In the sequel the complex-valued function =,
which is defined by

ViE = Hapt? | (2.12)

will be used. Notice that a priori = is only defined up to the addition of a constant. If
the space-time is assumed to be also asymptotically flat, = can be uniquely normalized
by a decay condition = — 0 at spatial infinity (see Section 3.1 for more detail). The

function = takes the place of the Ernst potential o used in [22].
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2.3 Some computations regarding the main play-
ers

The Ernst two-form, the Maxwell two-form, and the Weyl curvature are the principal
players in many of the computations in subsequent chapters. Here some of their
properties, all related to the divergence-curl system they satisfy, are recorded.

Consider the decomposition of the Riemann curvature tensor
(Rpf>abcd = Cabcd + Sabcd .

Because we act by P_ on the right (and not on the left), the expression still observes
the second Bianchi identity
V[e(C + g)ab]cd =0. (2.13)

Take a contraction between the indices e, ¢,
VCabed + VEabea = %(Vade = ViThoa) -
Noting that
Eabed = %(9 @) T)abefzefcd) = %fabef(g @) T)efcd = Eedab
by the second Singer-Thorpe theorem,
VEabed = Lapey (VT ) . (2.14)
Using that (Z + 7 Vaber X ef = X, we obtain the contracted second Bianchi identity

VCabed = Labes VT . (2.15)
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From the Maxwell equations, H, is harmonic. Combining the two gives

0= VC[VCHab + V. Hpe + vam]
O,Hap = [V, VaHa — [V, V| Hea (2.16)
- Rcacdeb + Rcadecd - Rcbcdea - RcbadHcd
- degacHCd - TadgbcHCd - RabcdHCd

= - abcdHCd = _CabcdHCd . (217)
The derivative of F,;, can be written down explicitly as

vc~¢'ab = (Rdcab + ichab)td

= 2Caeart” + 2Eacart” . (2.18)
Taking the trace gives immediately
VOeFap = —Tupt” .
On the other hand, notice that
V (EHw) = —H" “tqHup = _indtd :

which implies

VY Fup — 4ZHa) =0 . (2.19)

Since Fp — 4=H, is anti-self-dual, the fact it is divergence free implies that it is also
curl free, and hence it is a Maxwell field.
The following fact about Killing vector fields will also be needed. Consider the

roduct *Fu* Fog = feaperecaonF F9". The product of the Levi-Civita symbols can
p 4 Cabef Cedg P
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be expanded in terms of the metric:

EijMEqm = —2491[(19;929;} .

By explicit computation using this expansion,

* €T k 1 a x x a xT
Fnt™ Ft¥ = 5 b F (ttn — tot™ Gomn) + Grn Faat " FY, — Fopt® Fppy t?

+ FYt t, Foy + FOt ot Fop + tot“ Flua Fu®

Writing t2 = t,t%, from the fact Vyt? = t*F;, the following, which is identical to

equation (13) from [22], is obtained:

1
Pt Fpt? = éFabF“b(tmtn — Grnt?) + Grn Vat*Vt? — V12V, 12 (2.20)

+ t Fp Vo2 + t,Fp Vo2 + t2F,  F,* .

2.4 Tetrad formalism

The null tetrad formalism of Newman and Penrose will be used extensively in the
calculations below, albeit with slightly different notational conventions. In the fol-
lowing, a dictionary is given between the standard Newman-Penrose variables (see,
e.g. Chapter 7 in [39]) and the null-structure variables of Ionescu and Klainerman
[14] which is used in this work.

Following Tonescu and Klainerman [14], the space-time is assumed to contain a
natural choice of a null pair {l,1}. Recall that the complex valued vector field m is

said to be compatible with the null pair if

g(l,m) = g(l,m) =g(m,m) =0, g(m,m)=1

28



where m is the complex conjugate of m. Given a null pair, for any point p € M,
such a compatible vector field always exist on a sufficiently small neighborhood of p.
The set of vector fields {m,m, [, 1} is said to form a null tetrad if, in addition, they
have positive orientation €gp.qm®mll°l1? =i (m and m can always be swapped by the
obvious transformation to satisfy this condition).

The scalar functions corresponding to the connection coefficients of of the null
tetrad are defined, with translation to the Newman-Penrose formalism, in Table 2.1.

The I'-notation is defined by

Faﬁw = g(ve’y€67 ea)

where for e; = m, e; = m, e3 = [, and eq = [. It is clear that I3, = 0, i.e. it is
antisymmetric in the first two indices. Two natural? operations are then defined: the
under-bar (e.g. 6 < 0) corresponds to swapping the indices 3 <> 4 (e.g. T'140 < ['132),
and complex conjugation (e.g. 6 « f) corresponds to swapping the numeric indices
1+ 2 (e.g. I'iyo <> I'aq1). Note that 0,0,9,9,¢,£, 1,7, are complex-valued, while w
and w are real-valued; thus the connection-coefficients defined in Table 2.1, along with
their complex conjugates, define 20 out of the 24 rotation coefficients: the only ones
not given a “name” are I'191, ['199, ['123, ['124, among which the first two are related by

complex-conjugation, and the latter-two by under-bar.

2Buyers beware: the operations are only natural in so much as those geometric statements that
are agnostic to orientation of the frame vectors. Indeed, both the under-bar and complex conjugation
changes the sign of the Levi-Civita symbol; while for the complex conjugation it is of less consequence
(since the complex conjugate of —i is 4, the sign difference is most naturally absorbed), for the
under-bar operation one needs to take care in application to ascertain that sign-changes due to,
say, the Hodge star operator is not present in the equation under consideration. In particular,
generally coordinate independent geometric statements (such as the relations to be developed in this
section) will be compatible with consistent application of the under-bar operations, while statements
dependent on a particular choice of foliation or frame will usually need to be evaluated on a case-
by-case basis.
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I'-notation | Newman-Penrose | Ionescu-Klainerman

9(Vml,m) ['142 p 0
g(Vinl,m) ['i39 H 0
9(lea m) [y —0 s
g(Viml,m) ['i31 A 9
Q(Vll, m) F144 —K 5
g(Vil,m) ['133 v §
g(Vil,m) s —T n
g(Vil,m) ['i34 ™ n

g(Vil, 1) [344 —2€+T'a14 w

g(Vil, 1) [433 29 + I3 w
9(Vil, 1) ['341 =28+ Topy ¢(=—¢

Table 2.1: Dictionary of Ricci rotation coefficients vs. Newman-Penrose spin coeffi-

cients vs. lonescu-Klainerman connection coefficients

The directional derivative operators are given by:

D=1V,, D=1V, , § =m"V,, § =m"V,

(their respective symbols in Newman-Penrose notation are D, A, 4, ).

The spinor components of the Riemann curvature tensor can be given in terms

of the following: let W,p.q be the Weyl curvature tensor, S,, be the traceless Ricci

tensor, and R be the scalar curvature,

Uy =W(Il,m,l,m)
U =0, =W(,m,1lm)

Uy =W(m,1,11)
U =0, =W(m,111

Vo =W(m,l,m,l)
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Oy, = S(1,1) (2.21f)

@, =5(,1) (2.21g)
Do = S(m, 1) (2.21h)
Qo = S(m, 1) (2.21i)
Dog = S(m, m) (2.21j)
By — %[S(L 1) + S(m, m)] (2.21K)

Notice that the quantities W4, A € {—2,—1,0,1,2} are automatically anti-self-dual:
replacing Wopea < “Wapea gives WA(*W) = (=)W 4 (W), which follows from the or-
thogonality properties of the null tetrad and the orientation €(m,m,[,1) = i. Using
this notation, the null structure equations, which are equivalent to the Newman-
Penrose equations, can be derived from the definition of the Riemann curvature ten-

SOor:

Raﬁuu = eu(FaBV) - eu(raﬁu) + Ppﬂvrapu - Fpﬁurapv + (FPW - Fpuu)rocﬁp

and that

1 1
Raguw = Wag + 5(Sangsw + Spvgan = Savdsn = Soudar) + 15 8(9angor = 9oudar) -
So from Rigy1 = Wiaar = — Vo,

(D +2T124)0 = (6 + T121)6 = £(2C + 7+ 1) = (W + 0 +60) — Ty, (2.22a)

and by taking under-bar of the whole expression, a similar expression for Ry33; = — ¥,

can be had (in the interest of space, the obvious changes of variables are omitted here).
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For Ryq4o = —%5’44 (and analogously Ri33 = —%533),

- - - 1

_ 1
From Riyg3 = =¥ — 5514,

(D +T2a)n — (D + Ti23)§ = —2wE +0(n — ) + (7 — 1) — V1 — 5o -

1
From Ry = 5511;

— 1
(D + 2T123)0 — (6 + Taa1)n = 0° + £€ — 09 + V(w — ) + 5@00 :

From Ryy3 = —V¥¢ + %R,

= = - R
29—(5+F122)77Zfé—l—nﬁ—ﬁﬁ—f—ﬁ(g—@—\Ilg—i-ﬁ.

From Ry = -V + %541,

- - - — 1

Using Rgaq1 = =1 — 1541,

R
12

(D+T124)¢ — 0w = W(C+ﬂ)+9(ﬂ—<)+ﬁ(ﬂ—o—f(Q+£)—fﬁ—q’1—%q’01 :
From Rsus = Vo + Wo — S3q + % ;
Dw + Dw = €+ €6 —im — 0 + (7 — 1) + C(n — 1) — (o + Wo) + Po — — -
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And lastly from R3421 = ‘I](] - \IJO,

(6=T11)— (3+T122)C = (TI—0D)+(00—00) +w(8—0) —w(0—B)— (Wo—Ty) . (2.22i)

The Maxwell equations can also be decomposed in this formalism: let

T, = %(H(Z, D) + H(m,m)) = Hall" (2.23a)
T, = H(l,m) = Hapl*m® (2.23D)
T, =X, =H(mI) = Hupm (2.23c)

be the spinor components of the Maxwell two-form H,,. Maxwell’s equations become

QTO — (5 — Flgl)fr,1 = §T1 — QQTO — (C — ?7)T,1 (224&)

(Q + F123)T1 - 5T0 = (g - Q)Tl -+ 2?7T0 - 'I.9T,1 (224b)

and their under-bar counterparts.
The Bianchi identities

\Y% le Rab} ed =0

also need to be expressed in the formalism. Note that this implies

1
veVVebcd = V[C‘S’d]b - Egb[cvd}R = Jped >

which gives

1
v[eWab]Cd = éeseabjsrt@rtcd .
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Using the orientation condition €(m,m, [, 1) = i, the following can be demonstrated

1

2

= —(20+7)Vs + (40 4+ w) ¥y + 3 ¥,
1

_ - 1 1
— (0 + 501)(1)01 — 9oy + (¢ + Eﬂ)q)ll + &P + 55@00

1 1
(Q + 2P123)\I/2 — ((5 + F121)\I/1 + §<D + 2F124)(I)00 — 5(5 + F121)<I)01 (225b)

_ 1
((5 + 2F122)\I/2 — (D + F124>\Ill + 5(5(1)11 — (D + F124)(I)01 (225&)

= (2w — )Wy + (¢ +4n)¥y + 39V,

1. 1 1
- 59‘1900 — Py — §Q¢11 +EDg; + (EC +1)Po1

- 1 1 - 1
—((5 + Plgg)\lfl - D\I/() — §D(I)0 + 5((5 - F121>(I)01 - ﬂDR (225C)

= =0, + (27 + )Wy + 30T, + 260,

1 - ~ 1- 1 -
- 5(( + 1) P01 + 0P + 5@‘1)11 + 519@)0

1_ 1 1 -
- §§§01 - §ﬂq)01 - 55901
- 1 1 1
(D +T94)¥, + 0V + 5(2 + Ii93) P — 55% + ﬂdR (2.25d)

= =200, — 3V + (w — 20)T, + £V,

1 — 1. 1 - 1 -
+ 5(@ - Q)(I)Ol - §9Q01 - 519§01 - EQ(I)OI

1
+ 57_]@00 + 1Py

In addition, taking the trace of the Bianchi identities gives

0= VeWebcb = chb
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and evaluates to

= 1
—0®g — (0 4 2T122)Poo + (D + I'123) Doy + (D + T'124) Py + Z(SR (2.25¢)
= (N +1)Po0 + 2(n + n)Po + (w — 20 — 0)Dg; + (w — 20 — 0) P
— 9Dy, — 9oy + £Dyy + EPyy

- . 1
D®y+ DPyy — (6 — T'yo1)Por — (0 + T122)Por + é_lDR (2.25f)

= —JDgy — 2(0 + 0) Do + £Dy; + (¢ + 27 + 1) Por — VDo

+ Doy + (( 420+ )P0 + (2w — 0 — )Py

A simple identification using Table 2.1 and the definitions for various spinor com-
ponents of the Riemann and traceless Ricci tensors shows that one can recover all
of the Bianchi identities in Newman-Penrose formalism from the above six equations
through the action of complex-conjugation and under-barring.

Lastly, to complete the formalism, the commutator relations are recorded here:

[D,D] = (n—mn)d + (7 — 7)) —wD +wD (2.26a)
[D,6] = =96 — (D124 + 0)0 + (n+ () D + €D (2.26D)
[0,0] = T1210 + L1026 + (8 — ) D + (0 — 6) D (2.26¢)

2.5 Geometry of bifurcate event horizon

As discussed in Section 1.3, the properties of the bifurcate event horizon is well
studied. Here we summarize some of the trivial geometric constructions related to
it. Throughout H* will denote a pair of smooth null hypersurfaces of (M, ga),
intersecting transversely in §),, a topological sphere. We will also require that $*
have vanishing null mean curvature as required by Hawking’s area theorem.

First recall the definition of the null mean curvature. Given $§ C M a smooth
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null hypersurface in a Lorentzian manifold, it is easily verified that at any point
p € $ there exists a unique direction L € T,$ C T, M such that g(L,v) = 0 for any
v € 1,%. By suitably normalizing L we can require it to be a smooth, future-pointing,
null geodesic vector field tangent to §; the geodesics tangent to L are said to be the
generators of the hypersurface §. We can define a horizontal structure "I'$) = T'$/L
by identifying two elements of 7,,$) when they differ by a factor of L. The metric on
M induces a Riemannian metric on "7'$). The null Weingarten map associated to L

is defined to be by, : "T'$H — "T'$ given by

b([X]) = [VxI]

where X is a representative in 7§ for [X] € hT§. It is easily checked that since
g(VxL,L) = %8Xg(L, L) =0, VxL € T$H. A simple computation shows the null
Weingarten map is well defined for a fixed L, and that it is tensorial in L (namely
bfr, = fbr). The null mean curvature for §) relative to L is defined as the trace of by,.
Notice that while the null mean curvature depends on the choice of the vector field
L, its sign is invariant relative to the normalization of L. The null mean curvature
is related to the area in the following way: let S C $ be a space-like hypersurface,
and write wg for the induced volume form by the global metric g. Writing the one

parameter family of flows generated by L as ®;, we have that

O (Prws) = (trbr)ws .

In other words, the null mean curvature measures the growth of the volume form
between successive spatial slices of §), which is why in the physics literature it is also
known as the null expansion for a null congruence. In particular, a null hypersurface

for which the null mean curvature vanishes is said to be non-expanding.
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2.5.1 Non-expanding null hypersurfaces and adapted tetrads

Now, consider a tetrad m,m, [, adapted to the null hypersurface $ by requiring [ to
be the null generator of § and that V;l = 0. Then the requirement that [ is geodesic
on $) translates to the requirement that the null structure coefficients £ = w = 0 on
9. If we further require the condition that m,m are “tangent” to $), we see that the
vanishing of null mean curvature is identical to requiring 6 = 0. (By fixing m and [,
we also fix [ by requiring it to be future pointing, orthogonal to m, and to have fixed
inner product against [.)

Let us now consider the consequences of vanishing 6, w, £ by looking at the null

structure equations.

e By (2.22b), which is in fact the Raychaudhuri equation in disguise, we have |[¢]*+
%@11 = 0. Suppose our space-time verifies the strong energy condition (which
is satisfied by the Einstein-Maxwell system), ®;; > 0. So we can conclude that
¥ = 0 and $1; = 0. Now, since we are interested in the case of the Einstein-

Maxwell system, we have

Oyy = S(1,1) = AH(L, m)H(l,m) = 4|1, |

and hence T; = 0.
e By (2.22a), ¥y = 0.

e By (2.22f), ¥, = %(I)Ol. Notice that

Doy = S(I,m) = 4H(l,m)H(m,m) = —4T; Ty

so ®y; = 0 from calculations above. And hence ¥; = 0.

e By (2.22g), (D + I'194)¢ = 0. This says that ¢ is essentially constant along
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generators of the null hypersurface.

e By (2.24a), DYy =0, so Ty is constant along the generators of the null hyper-

surface.

[ J By (224b), (D - F124)T,1 = —((5 + 277})T0

o Oog = —4H(I,m)H(m,l) = —4T;T_; = 0.

e By (2.25¢), —DV, — %D@O =0on 9. Now &y = 41Ty, so DP, = 0, hence U,

is constant along generators of the null hypersurface.

Now, let §* be two smooth null hypersurfaces that intersect transversely in .
Let | be a geodesic generator of §T, and [ be a geodesic generator of $~, normalized
so that g(1,1)|99 = —1. We can complete a null tetrad along H* U $H~ by requiring
m,m tangent to $y. If we assume that both $H* and $H~ are non-expanding, the
above analysis can be performed on both $§* (with appropriate changes for [ + [ and
taking the underbar of all scalars defined in Section 2.4), and especially on £,. We

summarize the result here
L Onﬁ+,9:w:€:l9:(), andlpgzﬁJl:Tl:O.

e OnH l=w=E=0=0,and ¥V o=V ;=T 1 =0.

e On HTUH™ ¥, and T are constant along the geodesic generators.

We also note that the Bianchi identities (2.25b, 2.25d) can be reduced to

(D — 2T 124) ¥ _5 — (6 — Tyg0)¥_; — %(5 — T'192) @y, (2.27a)
= (G ATy 80T — 0%+ (5 + M)y,

%(Q — T'193)Pg1 — %5@0 (2.27b)

= =300, + 7P

(D —Tio)W_; + 6T, +
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2.5.2 Double null foliation near bifurcate sphere

The null tetrad chosen above still has considerable freedom in the gauge. In particular,
in the construction above we can always locally modify m and m by factors of [
(essentially picking different representatives in T'$) of fixed elements in "T'§), while
compensating in modifying the definition of [. Here we’ll present the double null
foliation, which allows us to have a coordinate system in a neighborhood of $y; the
restriction of this codrdinate system on $T gives a way to fix the null tetrad up to a
complex rotation in m and m. The construction is standard, and we follow here the
presentation in [14].

The double null foliation is based on two optical functions u, u defined in a suffi-
ciently small neighborhood of §y in M. Let [ be defined on $H* and [ be defined on
$H~ as before by parallel translation. We define the functions u,u by setting u = 0
on H', and u = 0 on $H~, and propagate v on H~ by asking it to satisfy [(u) = —1
(recall that [ is future pointing, so u increases as we go into the past) and similarly
propagate u on $* by I(u) = 1. We get then a foliation of $H~ by the level sets £,
and a foliation of T by the level sets g,. Then we can define [ on $~ as the unique

future pointing null vector field that satisfies

gl,l)=—1, g(l,bv)=0 YveTHy ;

similarly [ can be defined on $HT. Let $H“ be the geodesic congruence generated by
[ initiated from $,0; and $H~* the geodesic congruence generated by [ initiated from
$Hou- These two congruences are well-defined on a sufficiently small neighborhood O
of $9. Define the function u such that its level surfaces are $ and u such that its

level surfaces are % We also write §,, := H1* N H % By definition u, u are both

39



positive in O N®. By construction they are optical functions:

g(Vu,Vu) = g(Vu,Vu) =0 .

Define in O the function

Q:=g(Vu,Vu) ,

and observe that |g+u5- = 1. Define the vector fields L, L as

L¢ = gabvbu 7 La — gabvbg

so L agrees with [ on $*, and L agrees with —[ on $*. They satisfy

g(L,L) =g(L,L)=0, g(L,L)=0.

We will also write O, for the neighborhood

Oc:={zx€0:|ul,|ul <e}.

(2.28)

(2.29)

(2.30)

(2.31)

By continuity, there exists a small ¢, such that O, is compactly included in O, and

such that Q > £ on O,,.

A null frame can be easily completed on $§* by the following definitions of m, mn.

Choose m,m as complex vectors on T'$), (we will not be able to define them on

the entirety of £, as S? is not parallelizable; but it suffices to consider an open

neighborhood of §, at a time). We Lie transport m and m along the null generators

by [ and [; that is, we require [m,l] = 0 on H* and [m,l] = 0 on H~. While Lie

transport, in general, will not preserve the inner products g(m,m) and g(m,m), on

$H* we have that the null expansion 6 (or ) and null shear ¥ (or ) vanish, which

guarantees that g(m,m) = 0 and g(m,m) = 1 when m,m are constructed this way.
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Notice that by construction m(u) = 0 on H* and V;(m(u)) = V,,(I(w)) = 0 on H7,
which by the fact that m(u) = 0 on £ means m(u) = 0 on H'. Arguing similarly on
$~ gives us that m,m are in T'$),p and T'9g,.

The particular advantage of this localized null frame on $* and $~ is that, by the
requirement [I, m] = 0, we have V;m = V,,[, so the Ricci coefficients T'y14 = T'pa1. In
particular, in view of the calculations in the previous section, this implies that on $*
194 =0, and on $H~ I'193 = 0, further simplifying the calculation when our attention

is restricted to the surfaces $H*.
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Chapter 3

A characterization of the

Kerr-Newman black holes

In this section, a local characterization of the Kerr-Newman metric is obtained. The
heuristic argument behind the characterization lies in the special aligned, Petrov type
D algebraic structure of the Kerr-Newman metric. We begin by giving a brief review
of the algebraic structure of Kerr-Newman metric, in particular the notion of principal
null directions.

First consider the case of a two-form X,,. It can be considered as an anti-
symmetric map on the space of vectors. Because the metric on the tangent space
is Minkowskian, we can ask for its eigenvectors. One immediately sees that if r* is
an eigenvector of Xy,

Arirg = Xapr'r® =0

the last equality by the antisymmetry. Hence either the eigenvalue A = 0 or 7% is a
null vector. In the latter case, r* is said to be a principal null vector of X,,. By the
classification theorem (a fact made immediately obvious in the spinor decomposition,
see e.g. [30]), any non-zero two-form must admit either one repeated principal null

direction, or two distinct principal null directions. In the former case the two-form
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is said to be null, and it satisfies X2 = 0 where X,; is the anti-self-dual part of X,.

Note that the eigenvalue equation can be re-written in the following form:

T[CXa}bTb =0.

Now consider the case of an algebraically Weyl field. It can be viewed as a trace-
free symmetric map from two-forms to two-forms. Therefore we can also consider
its eigenvectors (where the “vectors” now are two-forms). But recalling that the
two-forms also admit classification by principal null vectors, we observe that this
classification can be immediately passed upward to the level of Weyl fields. In par-
ticular, we say that a vector r* is a principal null vector of an algebraically Weyl field
Clabea it

TbTCT[eCa]bc[de] =0

in direct analogue to the spin-1/two-form case. The Petrov classification (see [45,
39, 30]) gives the possible multiplicities of principal null directions; again, this fact
is most obvious in the spinor language. We will not discuss all of the Petrov types
here, it suffices to say that up to multiplicity, there must be exactly four principal
null directions for a Weyl field (unless the field vanishes completely). An algebraically
Weyl field is said to be Petrov type D if it admits two distinct principal null directions
each with multiplicity 2.

The Kerr-Newman space-time features a triple alignment of principal null direc-
tions. On the Kerr-Newman space-time, the two two-forms, Ernst F,, and Maxwell
H,,, are naturally defined. Both of the two-forms are everywhere non-null and each
admits two distinct principal null directions. Furthermore, the principal null direc-
tions for the Ernst and Maxwell two-forms agree everywhere. In addition, the Weyl
curvature is everywhere Petrov type D, and the principal null directions for the Ernst

and Maxwell two-forms are also each repeated principal null directions for the Weyl
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curvature. This is the starting point of the characterization given in this chapter.

Historically much work has gone into the study of non-null solutions to the
Einstein-Maxwell equations. A comprehensive study of this subject goes under the
name of Rainich theory, whereby the Einstein-Maxwell equations are reduced to a
set of algebraic conditions and the Rainich differential equations. An interesting re-
cent work of J.J. Ferrando and J.A. Sdez [10] starts from Rainich theory and shows
that if one restricts to the class of non-null solutions to the Einstein-Maxwell system
which are Petrov type D and has alignment of the Weyl and Maxwell principal null
directions (stationarity is not assumed in their work), the solutions can be classified
completely base on purely algebraic conditions, and not differential ones. One can
consider the result given in this chapter a special case of the result of Ferrando and
Saez, in which the metric becomes completely integrable. The chief difference, of
course, is that here a triple alignment is assumed, which is available only because we
focus on the stationary class.

Heuristically, we follow the approach of Mars [22] in the construction of our char-
acterization. The alignment of principal null vectors for two two-forms X, Y,, can

be expressed as

Xab X yab

where the scalar of proportionality is a complex number. Now, one can observe
through direct computation that the symmetric spinor product of two two-forms
(X®@Y)abea is a Weyl field with principal null directions the union of the principal
null directions of X, and Yy, thus if X, is non-null, (X®@X)aeq must be type D.
So we can write the alignment condition of the principal null directions of the Weyl

curvature as

Cabcd X <X®X)abcd .

Just a proportionality is, however, not enough. We need to know the exact factor to
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characterize Kerr-Newman metric!.

The necessity of a scalar function that desribed the proportionality factors? can be
interpreted as the following. It has been shown in Chapter 2 that the Ernst two-form
F,;, satisfies a Maxwell equation with source which depends on the stress-energy tensor
of the Maxwell field H,, and its own vector potential ¢,. In otherwords, the Ernst
two-form behaves like an electro-magnetic wave minimally coupled to the background
geometry but also driven through interaction with the free Maxwell field. The Weyl
curvature, on the other hand, can be seen to satisfy a divergence-curl system (a spin-2
wave equation) by examining the second Bianchi identities. Thus the Weyl field is also
seen to be a spin-2 wave that is driven by the Maxwell field. By the complexification
procedure, the system is essentially invariant under a U(1) gauge action. So we have

the following heuristic analysis of degrees of freedom for the system:

1. The principal null directions of the three waves. This we fix to be aligned by

assumption.

2. The frequency of the three waves. This we fix to be identical by the assumption

that all three waves are fixed by the Killing action of t°.

3. The amplitude of the three waves. This should not require fixing, as one may
expect the ratio of the amplitudes should give us the charge/mass and angular-
momentum/mass ratios of the space-time, and so should be free. The exact

amplitude of the Ernst two form and the amplitude of the Maxwell form are, of

IStrictly speaking, this statement is false. As Mars indicated in [23], just the proportionality
expression suffices, with assumption of stationary asymptotic flatness, for showing a local isometry
from a given solution of the Einstein vacuum equations to the Kerr metric. That the proportionality
factor is necessary in this work is due to more subtle reasons, the two main ones being that (1)
we require a purely local characterization of the Kerr-Newman metric whereas the result in [23]
requires non-local information from spatial infinity; and (2) it is impossible to work analytically
with an algebraic alignment condition without the proportionality factor. Both of these reasons
are motivated by our analytic approach to the conditional uniqueness theorem for Kerr-Newman
metrics; see Chapter 4. It will be an interesting further project, separate from the goals of the
current work, to see if the characterization derived herein admits a generalization a la Mars [23].

2Beyond this heuristic justification, see also Remark 3.3.8 below for another reason why the
proportionality factors are useful.
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course, related by the Komar mass formulae to the asymptotic mass and charge

of the stationary space-time.

4. The phase difference of the three waves.

Hence to uniquely describe Kerr-Newman space-time, we heuristically expect to need
to know certain renormalizable (see Theorem 3.5.1) factors of proportionality that
describes, essentially, the phase difference between the three waves (see Theorem
3.2.1 for precise description). Once all these degrees of freedom are fixed, we can, in
principle, directly integrate the Einstein equations and show that the metric must be
Kerr-Newman.

The method employed by M. Mars and the present chapter bears much similarity
to the work of R. Debever, N. Kamran, and R.G. McLenaghan [9]. In that work,
the authors assumed (i) the space-time is of Petrov type D, (ii) the principal null
directions of the Maxwell tensor align (nonsingularly) with that of the Weyl tensor,
(iii) a technical hypothesis to allow the use of the generalized Goldberg-Sachs theorem
(see Chapter 7 in [39] for example and references), and integrated the Newman-
Penrose variables to arrive at explicit local forms of the metric in terms of several free
constants and several unknown functions. In view of the work of Debever et al., the
assumptions taken in this chapter merely guarantees that their hypotheses (i) and
(ii) hold, and that (iii) becomes ancillary to a stronger condition derived herein that
circumvents the Goldberg-Sachs theorem as well as reduces the amount of freedom
in the local form of the metric.

We should also mention the work of D. Bini et al. [1] on a different generalization
of the result of Mars, in which they keep the same definition of the Mars-Simon
tensor, while modifying the definition of the Simon three-tensor [36, 37] with a source
term that corresponds to the stress-energy tensor associated to the electromagnetic
field. They were then able to show that the vanishing of the modified Simon tensor

implies also the alignment of principal null directions. In the present work, we absorb
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the source term into the Mars-Simon tensor itself using only space-time quantities
by sacrificing a need for an auxiliary two-form, thus we are able to argue in much of
the same way as Mars [22] an explicit computation for the metric expressed in local

coordinates, thereby giving a characterization of the Kerr-Newman space-time.

3.1 The basic assumptions on the space-time

Take a space-time (M, g) and a Maxwell two-form H,, on M such that they solve
the Einstein-Maxwell equations (see Section 1.1 for definitions). Assume the solution

satisfies the following assumptions
(A1) M is simply-connected.

(A2) (M, gu) admits a non-trivial smooth Killing vector field ¢*, and the Maxwell

field H,p inherits the Killing symmetry, i.e. its Lie derivative £,H,, = 0.

In the sequel a local and a global® version of the result will be stated. For the local

theorem, it is necessary to also assume

(L) the Killing vector field t* is time-like somewhere on the space-time (M, gq»),

and H,;, is non-null on M. (In other words H,,H® # 0 everywhere on M.)
And for the global result, it is necessary to assume

(G) that (M, gq) contains a stationary asymptotically flat end M where t* tends
to a time translation at infinity, with the Komar mass M of t* non-zero in M.
In addition the total charge ¢ = \/¢% + ¢% of the Maxwell field, where ¢z and

qp denote the electric and magnetic charges, is non-zero in M.

3The world “global” here is used to mean “non-local”. More precisely, in the theorems proven
below, we will not be able to obtain a global isometry from a given stationary, algebraically aligned
solution (M, gap, Hap) to the Einstein-Maxwell system to the Kerr-Newman space-time. Rather, the
word “global” here means that we extract global (or non-local) information from asymptotic flatness
to relax certain assumptions. The end result is still a local isometry.
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Remark 3.1.1. Here the definition of stationary asymptotically flat end is quickly
recalled: M™ is an open submanifold of M diffeomorphic to (to,t,) x (R3*\ B(R)) with

the metric stationary in the t variable, 09 = 0, and satisfying the decay condition
|9ab — Tab| + |r0gas| < Cr™!

for some constant C; r is the radial coordinate on R® and n is the Minkowski metric.

In addition, a decay condition for the Maxwell field is required:
|Hyp| + [rOH | < C'r 2

for some constant C’.

Observe that under assumption (G), by the asymptotic flatness, the complex scalar
= defined in Section 2.2 has a unique limit at spatial infinity. So a natural choice of

normalization is to set = — 0 as r — o0.

3.2 The tensor characterization of Kerr-Newman
space-time; statement of the main theorems

We first state the main result of this chapter, which establishes a purely local char-
acterization of the Kerr-Newman metric. This formulation is comparable to that
of Theorem 1 in [23]. The conditions given below on the constants Cy and Cj are

analogous to the conditions for the constants [ and ¢ in the aforementioned theorem.

Theorem 3.2.1 (Main Local Theorem). Let (M, gap, Hap) solve the Einstein-Mazwell
system. Assuming (A1), (A2) and (L), and assuming that there exists a complex

scalar P, a normalization for =, and a nonzero complex constant Cy such that
1. Pt = —C%HabHab
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2. Fop = 4ZHy,
8. Caped = 3P(FOH)aped
then we can conclude
1. there exists a complex constant Cy such that P™' — 2= = Cy;
2. there exists a real constant Cy such that t,t* + 4|=*> = Cy.

If Cy further satisfies that C1Cy is real, and that Cy is such that |Co|> — Cy =1, then

we also have

3. A= |C1]PPP(IC,VP)?+ (IC,P)? is a non-negative real constant on the man-

ifold*,

4. and (M, gup) is locally isometric to a Kerr-Newman space-time of total charge

|Cy|, angular momentum VAC,Cy, and mass C,Cs.

The local theorem yields, via a simple argument, the following characterization
of the Kerr-Newman metric among stationary asymptotically flat solutions to the

Einstein-Maxwell system.

Corollary 3.2.2 (Main Global Result). Let (M, gap, Hap) solve the Einstein-Mazwell
system. We assume (A1), (A2) and (G), and let qg, qp, and M be the electric
charge, magnetic charge, and Komar mass of the space-time at one asymptotic end.
We choose the normalization for = such that it vanishes at spatial infinity. If we

assume there exists a complex function P defined wherever H? # 0 such that
1. P*= —(qE + iqB)QHabHab when H? #0

2. Fup = (42 — 2L YH,, everywhere

qe+tigp

4% will be used to denote the imaginary part of an expression. Notice that 2 is well-defined even
though C; can be replaced by —C4. One should observe the freedom to replace C7 by —C; also
manifests in the remainder of this chapter; it shall not be further remarked upon.
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3. Caped = 3P(FQH)apea when P is defined
then we can conclude that

1. 'H? is non-vanishing globally,

2. A = (¢% + q3)PP(S(qr + iqe)VP)? + (S(qr + iqs)P)? is a non-negative real

constant on the manifold,

3. and (M, gu) is everywhere locally isometric to a Kerr-Newman space-time of

total charge ¢ = \/q% + q¢%, angular momentum VUM, and mass M.

Remark 3.2.3. If one explicitly computes the relevant scalars for the Kerr-Newman
metric in the Boyer-Lindquist codrdinates (1.3) and (1.4), one sees that by taking
Hab = (dA>ab;

2

q
HP=——
(r+iacos )4
and
P r +iacosd ‘
q

The Kerr-Newman metric is inherently Petrov type D with the triple alignment dis-
cussed in the beginning of this chapter. The Weyl and Mazxwell scalars obtained from

the null tetrad decomposition described later in (3.3) can also be calculated

q¢* — Mr 4+ iaM cos 6
(r —icosf)(r+icosf)3

q
T p— ‘y —_ -
7 2(r+iacosf)? " °

The Yo component of the Ernst two form can also be written down as

q*> — Mr 4+ iaM cos 6
(r —iacos@)(r +iacosfh)?

Ty =

For ease of notation, we write the complex scalar P, the complex anti-self-dual
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form B, and the complex anti-self-dual Weyl field Q.4 for the following expressions

1
Pli= ——— 3.1
C2H,,Hab (3-1a)
Bap := Fap + (2C3 — 42)Hep (3.1b)
Qabcd = cabcd - 3P(f®H)abcd (310)
By an abuse of language, in the sequel, the statement “B,, = 0” will be understood to

mean the alignment condition (2) in Theorem 3.2.1 when we work under assumption
(L), or the alignment condition (2) in Corollary 3.2.2 when we work under assumption
(G), with suitably defined constants and normalizations. Similarly, the statement
“Quvea = 07 will be taken to mean the existence of a suitable function P such that

the appropriate alignment condition (3) is satisfied under suitable conditions.

3.3 Proof of the main local theorem

Throughout this section we assume the statements (A1), (A2) and (L). The arguments
in this section, except for Lemma 3.3.1 and Proposition 3.3.2, closely mirror the
arguments given in [22], with several technical changes to allow the application to
electrovac space-times. Using the precise statement of Theorem 3.2.1, C3 should
be taken to be 0 in this section. We keep the notation C3 to make explicit the
applicability of the computations in the global case.

We start first with some consequences of assumption (L)
Lemma 3.3.1. If By, vanishes identically on M, then we have that

1. FaF% only vanishes on sets of co-dimension > 1,

2. FaF® =0 = Fu =0,

3. The Killing vector field t* is non-null on a dense subset of M.
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Proof. Squaring the alignment condition implied by the vanishing of B,, gives
F? = (42 — 2C5)*H> .

By assumption (L), if the left-hand side vanishes, then 4= — 2C5 = 0, and using the
alignment condition again, we have F,, = 0. This proves claim (2).

Suppose F,, vanishes on some small open set §, then necessarily V,t, = 0 on
0. Furthermore, we have that = must be locally constant as shown above, and thus

V.Z = Hpt? = 0. But
—y7a—= cay 4b 1 abyc
V.=V = HpH Ot = ZHubH t°t. =0

and since the Maxwell field is non-null, we have that ¢t* must be a parallel null vector
in §. If ¢* is not the zero vector, however, we must have t* being an eigenvector, and
hence a principal null direction, of H,,, with eigenvalue zero: this contradicts the fact
that Hgp is non-null. If t* = 0 on a small neighborhood d, however, t* must vanish
everywhere on M since it is Killing, contradicting assumption (A2). This proves
assertion (1).

Lastly, assume that ¢ = 0 on some small open set ¢, which implies V,t? = 0 and

0,t? = 0 on the neighborhood. Using (2.20), we deduce
* T* 1 2
Fat™ Fuyt? = 5 F bty

Taking the trace in m,n, we have

*Frpa  F™E " =0
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Using the fact that
_ 1
Fra F™ELy = VPV =0, Foei = 7(Fuchy + " Fuc F')
we have
FaeFpt" = 0.

Now, since B, = 0, this implies that
1205 — 422 T3t " = 0

on the open set §. If the first factor is identically zero in an open subset 0’ C 9,
then = is locally constant and arguing the same way as before we get a contradiction.
Therefore we can assume, without loss of generality, that T,;t*t* = 0 on our open set

0. Now consider the identity

1
0= 0, =V (t"Fy) = §Fb“Fba — 2Rt"t" .

The last term vanishes by the assumption, and implies that F**F,, = 0; thus * F},,t* =
0. Therefore

V2 =t'F, = 2t°F.p

in 0, and hence

0= Oyt* = FupF" — 2Rt "t

and so F, F% = 0 identically on §, which we have just shown is impossible. Assertion

(3) then follows. O
We can then prove claim (1) in Theorem 3.2.1:

Proposition 3.3.2. If By, and Qupeq both vanish on M, then P~ — 2= is constant.
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Proof. We start by calculating H*V .B,,. Using (2.18),

HV o Fup = 2[Qucab + 3P(FOH) dean |t H™
+ %(TadHac + ToeHa" — TueH g — TyaHL)t?
+ (T4 Hee + T Hap )t
= 2[Queap + 3P(FOH)acap tH™ + 2(ToaH® + Ty Hy" )t
= 2Quea H*t* + P(3F s Hay H® + HaeFuy H*)t*
+ 8(HagHa! M + HopHe! H)t?
= 2Q e Mt + P(3[C ' Bae — (2C5 — 4Z) Hae| Hapy H™

+ Hdc[cleab - (263 - 4E)Hab]Hab)td + 4,}_labr}_lab,’:(dctd

where we used (2.4d) and (3.1b) in the last equality. Using (3.1a), we simplify to

3 4
HOV Fop = 2Qgeay Ot — TP Bt + crps (205 = A=) H get?
1 1
. . 4
+ O ' PHa By H* ! — 7P Hact”

Applying the condition Q. = 0 and B,, = 0 and (2.12), we have

4 - - 4 _
ab = = =
H chab - @(203 — 4._)ch - @VCH

On the other hand, we can calculate
_ _ _ 1 - _
H®V, [(2C5 — 42)Hy| = —AH"H V.2 + 5(203 — 42)V (HapH™)

So putting them altogether we have

4 _ - 1
__ qqab _ _ 9= = _ _
0= H"V B = o s (Cs — 25)(2V.E ~ Vo5)
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By the arguments used in the proof of Lemma 3.3.1, = is not locally constant and so
C3 # 2= densely. The above expression (and continuity) then shows that 2= — 1% is

constant. ]
In what follows I'll write Cy = P~1 — 2= + Cs.

Remark 3.3.3. In the global case (where we assume (G) instead of (L)), the decay
condition given by asymptotic flatness shows that 2= and 1/P both vanish at spatial

infinity, and so Cy = Cs = M/(qr — iqp) everywhere.
The next proposition demonstrates assertion (2) in Theorem 3.2.1.

Proposition 3.3.4. Assuming the vanishing of By, and Qupeq, we have the following

identities

1
t2:—‘ﬁ—02 +Cy (3.2a)

t2
VP)?=—-— 3.2b
(VPF'=— (3.2b)

2 _ o

c,0,P=—————(C,Cy — (|Cs]? — C,))CLP 3.2¢
1=g ClClPP( 1%-2 (| 2| 4) 1 ) ( )

where Cy 1is a real-valued constant.

Proof. We can calculate
Vot? = 26"V, ty = —Fyot’ = —2R[Fput"]

The vanishing of B,, and Proposition 3.3.2 together imply

1 2

L 1 1
2 = — = _ b = — —_ — —_— = — _—
Vat = —AR[(2Z — Co)Haat'] = —2R[(5 — Co)Vars] = ~Va |5~ Co

The first claim follows as M is simply connected. Next, from Proposition 3.3.2 we
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get
1 2V,.=

VaP = va = - = —2P2H atb
2=+ Cg — 03 (23 -+ CQ — 03)2 b
So
t2
V,PVeP = 4P*Hy t"Ht, = P*H*t* = ~&
1

where we used (2.4d) and the definition for P. We can also calculate directly the

D’Alembertian

O,P = —2V*(P*Hpat")
1
= —2Hp, (2PVPt® + 5P2Fab)
1
= 2Hpo (4P H L " + 5Pbea)

1 _
= 2P3H?1? + QPQ(F — Cy)H?
1
Pl—-|=—
(-f5-c

e (3-6) (- (3-c)) s

2 1 -
- o5 (-G +a)

= 2P*H?

2 1 B
+C4>+E_CQ

from which the third identity follows by simple algebraic manipulations. O]

Remark 3.3.5. If we further impose the condition that C1Cy is real, then the imag-

wnary part of the third identity becomes

%(DQC&P) -

which will be useful later. In the global case, we can again match the data at spatial

infinity to see that Cy = |Cy|> — 1 = M?/q* — 1 (the condition relating Cy and Cy in
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Theorem 3.2.1 is directly satisfied); the third identity then reads:

2

(qe +igp)0yP = ~2PP (M — (qp — iqp)P)

An immediate consequence of the above proposition is that (VC; P)? is real. Writ-
ing the complex quantity C} P = y + 12z, where y and z are real-valued, we see that
this implies

VYyV,z =0

Furthermore, by Lemma 3.3.1, we have that, with the possible exception on sets of
co-dimension > 1, t? # 0. This leads to the useful observation that, with the possible
exception on those points, (Vy)? and (Vz)? cannot simultaneously vanish, and in
particular V,y and V,z are not simultaneously null, and thus rule out the case where

the two are aligned. We summarize in the following
Corollary 3.3.6. Letting C1 P =y + iz, we know that on any open set
1. P is not locally constant
2. Vuy and V,z are mutually orthogonal
3. Vay and V,z cannot be both null
4. Vay and V,z cannot be parallel

Replacing C, P by y + iz, and imposing the condition C;C, is real, we can also

rewrite
9 _0101 —2C1Cyy

=GP+

Since H,p is an anti-self-dual two form with non-vanishing norm, it has two dis-
tinct principal null directions, which we denote by [* and [, with the normalization

gapl“1® = —1. The alignment of Hy;, with F,;, (via vanishing of By;) allows the following
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expressions

1 ) c
Hap = W@alb — laéb + t€apeal ld)
) _
= 02 . c
«/Tab — P01P2 (ialb — laéb + Zeabcd£ ld)

By the assumption Q.,.q = 0, the principal null directions of H,, are repeated null

directions of the anti-self-dual Weyl tensor, and thus the space-time is algebraically

special (Type D). On a local neighborhood, we can take m, m complex smooth vector

fields to complete the null tetrad {m,m,[,{} (see Section 2.4), and in the tetrad

(spinor) formalism, the only non-zero Weyl scalar is

1 1
V= \Ijo = W(m,l,m,l) = _W <T - CQ)
1

the only non-zero component of the Maxwell scalars is

1

Y =Ty =Hull' =
0= Hal'l' =55 P

and the only non-zero component of the Ricci scalars is

1

oi=00=TLH=T(mm) = 5=r5rs

Notice the following symmetry relations

=y,

S
]
I
!
=
=l
I
[
I

=l

s

Now, from

20, PPHt* = —C, VP

o8

(3.3a)

(3.3b)

(3.3¢)

(3.4)



we can calculate

Voy = 1 1ot — 1 1 t* (Vy)? = 2,1, 1" (3.5a)

Viz = €paeat 11 (V2)? = 21, Lt t" + (3.5b)

So we need expressions for g(¢,1), g(t,1). From the fact that £,H = 0, we have

[t7£]alb + la[ta l]b - [t7 l]aéb - la[t7ﬂb =0

which we can contract against [ and [ (using the fact that [t,1],l* = 9,1*> = 0) to arrive

at

[t = L[t 1el” = Kil, (3.6a)

[t, l]a == la[taé]blb = _Ktla (36b)

where the function K, := [t,[];I’. Now

(9t(tblb) = Et(tblb) = Ktyl’

and similarly

O (tpl®) = — K t,l°

Lastly, we compute an expression for ¢ by

cb c
H vbp:}Hth:— t
2P? 4 4C2 P4
Therefore, by a direct computation
tC = _(lata)Lc - (lata)lc - 6cabd(vaz)ébld (37)
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Next is the main lemma of this section, which also gives assertion (3) of Theorem

3.2.1.

Lemma 3.3.7. Assuming Bu, and Qupeq vanish, C1Cy is real, and |Cy|? — Cy = 1, we

have the norms

A — 22
2
(Vz)" = SR (3.8a)
A + y2 + |C1|2 — 2016_'23/
(Vy)* = i (3.8b)

where 2 is a non-negative constant with z* < 2.

Proof. We will use the tetrad formalism of Klainerman-Ionescu (see Section 2.4) ex-
tensively in the following computation. By the alignment properties (3.3) and the

symmetry properties (3.4), the Maxwell equations simplify to

DY = —20Y DY = —267

—0T = 2T —0T =275
from which we arrive at
DP=6P, DP=@4P, §P=nP, §P=qP (3.9)
From the decomposition (3.5) we then have

V.y = —0C, Pl, — C; Pl, (3.10a)

iVaz = nC1Pmg + 7C1Pmg (3.10b)

Using the fact that y and z are real, taking complex conjugates on the above equations

gives us

QC’lP:é 1P, QCHP:QC&P, nClP:—QC’lp (3].1)



The Bianchi equations become

0=£(30 + ®) (3.12a)

0 =030 — D) (3.12b)
—Doy+%¢):3mp+é¢ (3.12¢)
&m-%®)=—3@y+n¢ (3.12d)
—0® =2(n+n)d (3.12¢)

D® = —-2(0+0)® (3.12f)

Because of the triple alignment given by By, = 0 and Qu.q = 0, the latter four
equations contain essentially the same information as the Maxwell equations. We

examine the first two in more detail. Consider the equation 3¥ 4+ ® = 0. This implies

3C,C,P* —3C,P+CiP =0

or

_ -2 —BFDy=0
acﬁy )= BF Dy
6C,Cy
_ —3+1)2=0
c.c v ( )2

Taking derivatives, we have

60102 60162
D2 341V = oL
(qqy AY cc, Y
60102 60102
3 F 1) Ve = — 2y
(& V2 oo, Y

By the assumption that C;C, is real, all the coefficients in the above two equations

are real. Suppose the equation 3¥ + ® = 0 is satisfied on an open-set, as Vy and Vz
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cannot be parallel by Corollary 3.3.6, we must have then

60102 60102
—y—3+1)Vy = =—2Vz=0

This implies that y and z are locally constant, which contradicts statement (1) in
Corollary 3.3.6. Therefore an equation of the form 3¥ 4+ ® = 0 cannot be satisfied on
open sets.

Applying to the Bianchi identities (3.12a,3.12b), we see that £ =9 = =9 = 0.

The relevant null structure equations, simplified with the above observation, are

(D +Tiou)n=0(n—n) (3.13a)

—60 = CO+n(0—0) (3.13b)

Define the quantity A = C,C,PP(Vz)?. Equations (3.10b) and (3.11) imply that
(V2)? = 2n3C,CL PP, so

0 < A =2mnCiC; P*P?
= 201 CinipP*P?

= —(y? + 2%) — (C,Cy — 2C,Cyy) — 200C*C? P* P?

where in the last line we used Proposition 3.3.4, Corollary 3.3.6, Equations (3.10a)
and (3.11), and the assumption that |C5*> — Cy = 1. By using (3.13a,3.13b) we

calculate
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Thus, with judicial applications of (3.11)

DA =2CTCi[0(n — )i + 0(7 — 7)n) P*P? + 4C;Cini(0 + ) P* P?
=0
0A = —6(2%) +2CTCTP*P?[n(0 — 0)0 + (0 — 0)6)]
— 4CICTP?P*(n + )00

= —5(2"

Since Dz = Dz = 0, we have that the function A+ 22 is constant. Define 2 = A+ 22.

The nonnegativity of A guarantees that z? < 2, and we have

A A — 22
2 __ _
(VZ> B Clélpp n y2 +22
and
2A + y2 + Clél — QClégy
2 — P 2 2 —
as claimed. O

Remark 3.3.8. In the proof above we showed that § =19 =§ =1 =0, a conclusion
that in the vacuum case [22] is easily reached by the Goldberg-Sachs theorem. It is
worth noting that in general, the alignment of the principal null directions of the
Mazwell form and the Weyl tensor is not enough to justify the vanishing of all four
of the involved quantities. Indeed, the Kundt-Thompson theorem [39] only guarantees
that §9 = 9 = 0. In our special case the improvement comes from the fact that
we not only have alignment of the principal null directions, but also knowledge of the

proportionality factor. This allows us to write down the polynomial expression in P

and P which we used to eliminate the case where only one of & and ¥ vanishes.

In the remainder of this section, we assume that C,Cy is real and |Cy|? — Cy = 1

and prove assertion (4) in Theorem 3.2.1. Let us first define two auxillary vector

63



fields. On our space-time, let
n® = (A + y?)t + (v + 22) (610" + 1,1°17) . (3.14)

Define Mg := {p € M|2?(p) < 2}. On this open subset we can define

Viz oy 422
(Vz)2 A — 22

b = Viz. (3.15)

We also define the open subsets M; := {p € M|(t,l*)(p) # 0} and M, :=
{p € M|(t.l*)(p) # 0}. Now, notice that in our calulcations above using the tetrad
formalism, we have only specified the “direction” of [,[ and their lengths relative to
each other. We still have considerable freedom left to fix the lapse of one of the
two vector fields and still retain the use of our formalism. On M, we can choose the
vector field [ such that ¢,* = 1 (similarly for [ on M;; the calculations with respect to
M, are almost identical to that on M;, so without loss of generality, we will perform
calculations below with respect to M) and the vector field [ maintaining [,[* = —1.

From (3.5) and Lemma 3.3.7, we have that on M; we can write

i A+ y2 + |C'1|2 — 2016_'29

ay — _la
Vel 2(y* + 2%)

la - _la + Ula (316)
which implies [,t* = U, where U is defined on the entirety of M as

1
U = [ t°Lt" = §(Vy)2 . (3.17)
We consider first a special case when t* is hypersurface orthogonal.
Proposition 3.3.9. The following are equivalent:
1. z is locally constant on an open subset U C M

2. A vanishes on M
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3. z vanishes on M

Proof. (2) = (3) and (3) = (1) follows trivially from Lemma 3.3.7. It thus
suffices to show (1) = (2). Suppose Vz = 0|;. We consider the imaginary part of
the third identity in Proposition 3.3.4 & la Remark 3.3.5, which shows that z = 0|y,.
From Lemma 3.3.7 we have 20 = 0|/, but 2 is a universal constant for the manifold,

and thus vanishes identically. O

It is simple to check that z = 0 on M implies Cy YH ot = VbCi—P is real, and so
the vanishing of B, implies F,t* = 2(%1-1—%— — C1Cy)Cy " Hgpt® is purely real, which by

Frobenius’ theorem gives that ¢ is hypersurface orthogonal.’

Proposition 3.3.10. Assume A = 0. Then, at any point p € M, there exists a

netghborhood that can be isometrically embedded into the Reissner-Nordstrom solution.
This proof closely mirrors that of Proposition 2 in [22].

Proof. We use the same tetrad notation as before. Since z = 0, we have C1 P =y
is real, and hence (3.11) implies that 0,0 are real. Furthermore, z = 0 implies via

(3.10b) that 7 = 0 = 1. The commutator relations then gives

[D,D] = ~wD + wD

[(5, 5] — F1215 + F1226

which implies that {l,l} and {m,m} are integrable. Thus a sufficiently small neigh-
borhood U can be foliated by 2 mutually orthogonal families of surfaces. We calculate

the induced metric on the surface tangent to {m,m} using the Gauss equation.

5As to the question whether ¢* can be hypersurface orthogonal without Vz = 0: in the next part
we will consider the case where 2 # 0 (implying z is nowhere locally constant), and show that in
the subset M; N My we have local diffeomorphisms to the Kerr-Newman space-time with non-zero
angular momentum, which implies that 2l = 0 is characteristic of the Reissner-Nordstréom metric.
Indeed, as we shall see later, the quantity 2 is actually square of the normalized angular momentum
of the space-time.
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First we calculate the second fundamental form x(X,Y) for X* = X;m® + Xom*
and Y = Yim® 4+ Yom® By definition x(X,Y’) is the projection of VxY to the
normal bundle, so in the tetrad frame, evaluating using the connection coefficients,

we have

X(X,Y)* = X1 Y1 (Digil® + Tianl®) + X1 Ya(Tasil® + Tagnl?)
+ XoV1(Tiz2l® + Tiaal®) + XoYo(Iagal® + Iosnl®)
= X,V (1% + 91%) + X, Ya(61° + 61°)
+ XoY1 (01 + 617) + XoYa (91" + 91°)
V% Ve

ZpalX.Y) = == Lg(x.y)

where the last line used the vanishing of ¢} derived in the proof of Lemma 3.3.7 and

Equation (3.10a). We recall the Gauss equation

Ro(X,Y,Z, W) = R(X,Y,Z,W) — g(x(X, W), x(Y, Z)) + g(x(X, Z), x (Y, W))

where X, Y, Z, W are spanned by m, m. Plugging in the explicit form of the Riemann
curvature tensor, we can compute by taking X = Z = m,Y = W = m the only

component of the curvature tensor for the 2-surface

2
Ro(m,m,m,m) = -V —F — & — (Vg)
Yy
Clél 20162 (Vy)2 1
Ty e 2

using Lemma 3.3.7 in the last equality. Now, since dy = 0, we have that the scalar
curvature is constant on the 2-surface, and positive, which means that its induced
metric is locally the standard metric for S? with radius |y|. Now, since Vy # 0 on our

open set, it is possible to choose a local coordinate system {x°,y, 22, 23} compatible
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with the foliation. Looking at (3.7) we see that ¢* is non-vanishing inside M, and is
in fact tangent to the 2-surface formed by {/,[}, so we can take t = ¢,0,0 for some
function t,. The fact that t* is Killing gives that 0,4t, = 0 for A = 2, 3. Recall that
we are working in M,, and we assumed that [,t* = 1, then we can write, by (3.16),

Ll = 0y + 5;0,0 for some function s,. The commutator identity

[D,6] = —(T04 + é)é +(D

shows that 0,45, = 0 by considering the decomposition we have for [ in terms of the
coordinate vector fields. Then the Killing relation [¢,1] = 0, together with the above,
implies that we can chose a coordinate system {u,y, 2% 23} with 9, =t and 9, = [
that is compatible with the foliation. Lastly, we want to calculate gap = ¢(0,4,0,5)

in this coordinate system. To do so, we use the fact that

= =t"+Ul"

Then the second fundamental form can be written as

X(X,Y) = (VxY)*
= —(VxY)"(Ll" +1L")

= —(Vx Y)Y — (t, + UL))

Now, when X, Y are tangential fields, since U only depends on y (recall that z = A =

0), we have that VxU = 0. Furthermore, we use g(Y,l) = g(Y,t) = 0 to see

XX, V) =YXV I, — 'YXV t, - PUY" X V.,
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So we have, using the fact that the second fundamental form is symmetric

2X(X, V) = YOX(I" — Ul")L1gae — VX" L1Gac

= —Y“Xcﬁlgacvby

Taking X and Y to be coordinate vector fields, we conclude that

2
aygAB = ;gAB

so that gap = 3?¢%z where ¢%5 only depends on 22, 2%. Imposing the condition

that gap be the matrix for the standard metric on a sphere of radius |y|, we finally

conclude that the line element can be written as

_ 2016_'23/ - 101‘2
2

ds® = —(1
( Yy

Ydu? + 2dudy + y*dwse

and thus the neighborhood can be embedded into Reissner-Nordstrom space-time of

mass C,C5 and charge |C}]. O

Notice that a priori there is no guarantee that C;Csy > 0, this is compatible with
the fact that we did not specify, for the local version of the theorem, the requirement
for asymptotic flatness, and hence are in a case where the mass is not necessarily
positive.

Next we consider the general case where t* is not hypersurface orthogonal. In view
of Proposition 3.3.9, we can assume that 2 > 0 and z not locally constant on any
open set. Then it is clear that the set Mgy is in fact dense in M: for if there exists
an open set on which z = 2, then Proposition 3.3.9 implies that 2 = 0 identically
on M. Therefore, the set (M; U M;) N Mg is non-empty as long as M; U M, is
non-empty; this latter fact can be assured since by assumption (L) that ¢* is timelike

at some point p € M, whereas [ and [* are non-coincidental null vectors, so in a
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neighborhood of p, we must have [%t, # 0 # [“t,. It is on this set that we consider

the next proposition.

Proposition 3.3.11. Assuming A > 0. Let p € U C M; N Mg such that t*,n®, b*
and [* are well-defined on U, with normalization [“t, = 1. Then the four vector fields
form a holonomic basis, and U can be isometrically embedded into a Kerr-Newman

space-time.

Before giving the proof, we first record the metric for the Kerr-Newman solution

in Kerr coordinates

2Mr — ¢?
ds? = — <1 — #> dV? + 2drdV + (r* + a® cos® 0)d6? (3.18)

r2 + a2 cos? 0
) (7% +a®)? — (r? — 2Mr + a® + ¢*)a? sin® 0] sin® 0
r2 4+ a2 cos? 0

2a(2Mr —q¢*) . ,
—_ 0dVd
2+ a?cos2f o ¢

de?

— 2a sin® Odpdr —

Notice that the metric is regular at r = M + \/M? — a? — ¢? the event and Cauchy

horizons.

Proof. We first note that in M;, we have the normalization

n® = (y* + 22)(1* + UL*) + (A + y*)t°

For the proof, it suffices to establish that the commutators between n®, b, [*, t* vanish
and that the vectors are linearly independent (for holonomy), and to calculate their
relative inner products to verify that they define a coordinates equivalent to the Kerr
coordinate above.

First we show that the commutators vanish. The cases [t,-] are trivial. Since we

fixed [“t, = 1, we have that

0 =t"V,(1,t") = Kityl" = K,
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so that K; = 0 and thus [¢,1] = [t,]] = 0. Since y and z are geometric quantities
defined from H,,, and U is a function only of y and z, they are symmetric under the
action of t*, therefore [t,n] = 0. Similarly, to evaluate [t,b], it suffices to consider
[t,Vz]. Using (3.5) we see that Vz is defined by the volume form, the metric, and
the vectors t*, 1%, 1%, all of which symmetric under t-action, and thus [t,b] = 0. The
remaining cases require consideration of the connection coefficients. In view of the
normalization condition imposed, Voy = —l, + Ul,, so (3.10a) implies §C1 P = 1,

0C P = —U. Recall the null structure equation

—00 = —C0+n(0 - 9)

Using

we have

CiP(On+¢0 —nf +nd) =0

Applications of (3.11) allow us to replace —i—ﬂQ_ by —nf in the brackets, and so, since
0C,P = DC,P # 0, we must have ( = 7, which considerably simplifies calculations.
Next we write

P2+ 22
A — 22

b = —i

g 1
(nCle“ — ﬁCle“) = ZQ[—

— (chC_'fPPQﬁ”L“ —c.c.)

by expanding V®z in tetrad coefficients, and where c.c. denotes complex conjugate.

Then, since Dz = 0,
—i(A — 2°)[L,b] = D(nC,Cy PP*)m® — c.c. + nC1CY PP [D, 6] — c.c.

We consider the commutator relation, simplified appropriately in view of computa-
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tions above and in the proof of Lemma 3.3.7,

[D,0] = —(Ta15+0)0 = (T'103 — e =)o
together with the structure equation

(D +Tia3)n =0(n—n)

and the relations in (3.11) and (3.9), we get

Q(gCléfPPQ)m“ —i—QCl(ijPQ[Q, 5]
= (D + T'123)nC1CT PP*m® — n|Cy P|*m® + nD(C,C; PP?*)m®
=0(n— Q)CléfPPQﬁl“ — Q|01P|2m“

+n(0CT P? + 20C,C{ PP*)m*

I
o

Hence [[,b] = 0. In a similar fashion, we write
n® = |CLP|*1* + %(9{ + 9% 4+ |C1 2 = 2C,Con)l® + (A + y)t°
From the fact that b*V,y = 0 and from the known commutator relations, we have
[n,b] = [C,C,PPL,b] + %(2{ + 2+ |CL* = 2C,Coy)[L, b] + (A + v)[t, D]

of which the second and third terms are already known to vanish. We evaluate
[C,C1PPL,b] in the same way we evaluated [/, b], and a calculation shows that it also

vanishes. To evaluate [[, n], we need to calculate [[,[]. To do so we write

¢ = —Ula — [ — T_]Clpma - n@lpm“
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Since [, t] = 0, we infer

,1] = —[L, UL+ 7C, Pm + nCy Pm]

=—-DUl— | nC3C,P*Pm] — c.c.

] 1
2 |01P|2

Notice in the proof above for [I,b] = 0 we have demonstrated [I, 7CZCy P2Pm] = 0, so

(ﬁC’le + n@lpm)

and

(recall that we set Dy = 1) so we conclude that

_y—clc_'z _ 2y
y2+22 = y2+22

1,1 = (I +1)

So, using the decomposition for n® given above

L] = [, (y* + 22+ (v° + 22)UL+ (A + y*)1]
=2yl + (y — 2C, Co)l + 2yt + (y° + 2°)[L, 1]

=0

Having checked the commutators, we now calculate the scalar products between
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various components. A direct computation from the definition yields

2 2
62:% bon—0 bl=0
l-n=9A—2> =0 l-t=1
p o = UG = 2CiCoy)(2* — ) g laP=20Gy
y? + 2* y? + 22
and
> — ) ot — 2T (0 — 20,
n® = (A — 2% +y—y2+22(| 17 = 2C1Chy)

A simple computation shows that the determinant of the matrix of inner products
yields
|det| = (y* +2%)* #0

and therefore the vector fields are linearly independent. Thus we have shown that
they form a holonomic basis.

To construct the local isometry to Kerr-Newman space-time, we define coordinates
attached to the holonomic vector fields t,[,b,n with the following rescalings. First,

since 2 > 0, we can define a > 0 such that 2 = a2. Then we can define the coordinates

r,0,V,¢ by
t =0y
=0, y=r
1
b= ——90 z=acosf
asin @
n = —ady

Notice that we can define § from z in a way that makes sense since z? < 2. Applying
the change of coordinates to the inner products above we see that in r,0,V, ¢ the

metric is identical to the one for the Kerr coordinate of Kerr-Newman space-time.
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Furthermore, we see that n, or 0y, defines the corresponding axial Killing vector

field. ]

To finish this section, we need to show that the results we obtained in Propositions
3.3.10 and 3.3.11 can be extended to the manifold M, rather than restricted to
(M; U M,) in the former and (M; U M;) N Mg in the latter. We shall need the
following lemma (Lemma 6 in [22]; the lemma and its proof can be carried over to

our case essentially without change, we reproduce them here for completeness)

Lemma 3.3.12. The vector field n® is a Killing vector field on the entirety of M.
The set M\ My = {n* = 0}. Furthermore,

o [fA=0, then M\ (M, UM,) = {t* =0}

o If0 < A < (C1C9)% — |C4)?, then M\ (MU M,) = { either n® — y t* =

0 or n® —y_t* =0} where

Y+ = 2(0162)2 — ‘Cl|2 + 20162\/(0162)2 — ‘01’2 — Q[

o If2A> (C1Cy)% - |C1 %, then M\ (M;UM,;) =)

Proof. First consider the case 2l = 0. By Proposition 3.3.9, we have z = 0. So
the definition (3.14) and (3.7) show that n® vanishes identically. Furthermore, since
My = () in this case, we have that n® is a (trivial) Killing vector field on M vanishing
on M\ Myg. It is also clear from (3.7) that t* =0 <= t,0* = t,l" = 0 in this case,
proving the first bullet point.

Now let 2 > 0. Then Proposition 3.3.11 shows that n® is Killing on (M; U
M;) N Mgy, and does not coincide with ¢t*. Since Mg is dense in M (see paragraph
immediately before Proposition 3.3.11), we have that n® is Killing on M; U M, (the
overline denotes set closure). We wish to show that M; U M; = M. Suppose not,

then the open set Y = M\ M; U M, is non-empty. In U, ¢,1* = t,I* = 0, so by (3.5),
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V% = 0in U. Taking the real part of the third identity in Proposition 3.3.4, we must
have y = C,Cy in U, which by Lemma 3.3.7 implies 2 = (C,C3)? — |C1]?. Consider
the vectorfield defined on all of M given by n%— (A+y?)t* = n®—[2(C1Cs)?* —|C, |]te.
As it is a constant coefficient linear combination of non-vanishing independent Killing
vector fields on M; U M, it is also a non-vanishing Killing vector field. However, on
U, the vector field vanishes by construction. So we have Killing vector field on M
that is not identically 0, yet vanishes on an non-empty open set, which is impossible
(see Appendix C.3 in [45]). Therefore n® is a Killing vector field everywhere on M.
Now, outside of My, we have that z? = 2 reaches a local maximum, so V,z must
vanish. Therefore from (3.14) and (3.7) we conclude that n® vanishes outside My
also, proving the second statement in the lemma.

For the second a third bullet points, consider the function U = 1(Vy)?>. By

definition it vanishes outside M; U M,. Using Lemma 3.3.7 we see that

Q(—f— y2 + |Cl|2 — QClégy =0

outside M; U M;. The two bullet points are clear in view of the quadratic formula

and (3.14). O
Now we can complete the main theorem in the same way as [22].

Proof of the Main Theorem. In view of Propositions 3.3.10 and 3.3.11, we only need
to show that the isometry thus defined extends to M \ (M; U M,) in the case of
Reissner-Nordstrom and M\ [(M;UM;) N My in the case of Kerr-Newman. Lemma
3.3.12 shows that those points we are interested in are fixed points of Killing vec-
tor fields, and hence are either isolated points or smooth, two-dimensional, totally
geodesic surfaces. Their complement, therefore, are connected and dense, with local
isometry into the Kerr-Newman family. Therefore a sufficiently small neighborhood of

one of these fixed-points will have a dense and connected subset isometric to a patch
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of Kerr-Newman, whence we can extend to those fixed-points by continuity. O]

3.4 Proof of the main global result

To show Corollary 3.2.2, it suffices to demonstrate that the global assumption (G)
leads to the local assumption (L).

By asymptotic flatness and the imposed decay rate (the assumption that the mass
and charge at infinity are non-zero), we can assume that there is a simply connected
region My, near spatial infinity such that H? # 0. It thus suffices to show that
My = M. Suppose not, then the former is a proper subset of the latter. Let
po € M be a point on OMzq. We see that Theorem 3.2.1 applies to My, with
(' taken to be qg + igp and C3 = M/(qe — iqp). In particular, the first equation
in Proposition 3.3.4 shows that, by continuity, t* = —1 at po. Let 6 be a small
neighborhood of py such that t¢ is everywhere time-like in § with 2 < —}L, then the
metric g induces a uniform Riemannian metric on the bundle of orthogonal subspaces
to t%, i.e. Upes{v € T,M|g(v,t) = 0}. Now, consider a curve v : (sg,1] — 0 such
that v(s) € My for s < 1, (1) = po, and “£v(s) has norm 1 and is orthogonal to
t. Consider the function (¢g + iqg)P o ~. By assumption, |(¢g + igg)P o~y| / o
as s /' 1. Since Lemma 3.3.7 guarantees that z is bounded in My, and hence by

continuity, at py, we must have that y blows up as we approach p, along v. However,

d :
|5 =1Vl < CVIVayVey| < €7 < oo

where the constant C' comes from the uniform control on g acting as a Riemannian
metric on the orthogonal subspace to t* (note that t*V,y = 0 since y is a quantity
derivable from quantities that are invariant under the t-action), and C” arises because
by Lemma 3.3.7, V,yV% is bounded for all |y| > 2M, which we can guarantee for s

sufficiently close to 1. So we have a contradiction: y o~ blows up in finite time while
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its derivative stays bounded. Therefore My = M.

3.5 Reduction to the Kerr case

The results stated in Corollary 3.2.2 explicitly makes the assumption that the asymp-
totic charge of the space-time does not vanish. With a small modification to the
statement, combined with the result of Mars [22], we can restate the result to also

include the case of vanishing charge.

Theorem 3.5.1. Let (M, gap, Hap) solve the Einstein-Mazwell system. Assuming
(A1), (A2), and that (M, gw) contains a stationary asymptotically flat end M
where t* tends to a time translation, with non-vanishing Komar mass M. Let = be

the complex-valued scalar function defined by

vaE/ = <QE - iQB)Hbatb

where qr and qp are the asymptotic electric and magnetic charges respectively, and

=" normalized such that it approaches 0 at spatial infinity. Assume there exists a

complex-valued function P’ defined whenever F* # 0 such that

f‘Q

PV ==

If the double-alignment conditions

(qm +iqp)Fap = (45" — 2M ) Hoap
3P

= (FEF ane
= —oap T OF abed

Cabcd =

are satisfied whenever the right-hand-sides are well-defined, then we can conclude that

1. either H? is non-vanishing globally, or that Ha, = 0 everywhere,
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2. A= PP (IVP)+ (IP')? is a non-negative real constant on the manifold,

3. and (M, gu) 1s everywhere locally isometric to a Kerr-Newman space-time of

total charge ¢ = \/q% + q%, angular momentum VUM, and mass M.

Proof. In the cases where ¢ > 0, it is clear to see that with the substitution Z' =

(qg — iqp)= and P’ = (qg + iqp)P, the definition of P’ and the double-alignment
conditions become equivalent to the assumptions made in the statement of Corollary
3.2.2. And hence the space-time is locally isometric to a Kerr-Newman space-time of
non-vanishing charge.

The renormalization imposed in the statement of this theorem allows us to in-
corporate the result of Mars. Note that by the stated conditions, if ¢ = 0, then

" vanishes identically on the space-time. The first alignment

the scalar function =
condition implies then that

0-Fup=—-"2MHg ,

guaranteeing that H,;, vanishes identically on the space-time. Then P’ can be iden-
tified with the scalar P appearing in [22], and that the second alignment condition
is precisely the alignment condition given in [22] or in [14] (up to factors of 2 which
arises from differing definition of the anti-self-dual projection and from the definition
of the Ernst two-form). Therefore we are allowed to apply Mars’ theorem (or one can
directly modify the proof of Theorem 3.2.1 to account for the renormalization) and

conclude that the space-time is locally isometric to Kerr. O]

In view of the above reduction, we collect the definition of the renormalized ver-

sions of By, Quped; and P below. These three quantities will be useful in the next
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chapter.

;b = (qE + iqB)fab - (42/ - QM)Hab (319&)
3P -
Qipea = Cabed — m<}—®}—)ab0d (3.19b)
f‘2
Pyt =————— |
() PRI (3.19¢)

79



Chapter 4

Uniqueness of the Kerr-Newman

solutions

The strategy for obtaining uniqueness is to rely on Carleman-estimate techniques
as in [14, 15]. The tensor quantities B., and Q., , will be seen to verify essentially
decoupled wave equations, and by making some technical assumptions on the bifurcate
sphere, B/, and Q/, ., can be seen to vanish on the bifurcate event horizon of the space-
time. By applying the Carleman estimate, the two tensors must vanish throughout
the manifold. As seen in Theorem 3.5.1 from the previous chapter, the vanishing of
the tensors Q!, ., and B., allows the construction of local isometries from the given

space-time into a Kerr-Newman space-time.

4.1 The wave equations for B/, and Q/, ,

For the application of Carleman estimates, it is essential that the tensor quantities

B!, and Q’, , verify sourceless wave equations, which can be written schematically as

DgS = U1A1 &® S + UQ.AQ ® V) (4.1)
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where, if S is a (p, ) tensor field, A; is type (p+q,q+Dp), Az is type (p+q+1,9+p),
and ® denotes full contraction of all the indices of S against those of A,. We will let
A, be a smooth tensor field constructed of linear combinations of tensor products and
contractions of (assumed) smooth geometric quantities, such as Caped, Fap, Hap, = and
their covariant derivatives. wv, are scalar coefficients that absorbs the not-a-priori-

smooth terms, such as P’ and The exact form of A, are not too important;

N S
4E—2M"
the form of v, are more so in the application of the Carleman inequality. The crucial
information, however, is that (4.1) is order reducing (that a second order operator
acting on S only gives rise to terms of zeroth or first order terms in &) and at least
linear in S (that it doesn’t contain terms that does not depend on S or VS tensorially;

note that the dependence can be quadratic or even higher power: it suffices that a

linear factor can be taken out).
Proposition 4.1.1. B), satisfies a wave equation of the form (4.1).

Proof. By the computation (2.19), B, and hence B.,, is Maxwell. So using the same
calculation as (2.17),

DQB;I) = _Cabch,Cd (42)
as claimed. O

Notice that the wave equation for B, is decoupled completely from Q!, ,. This
fact will become useful later. For now, just observe that the above proposition implies
that

k
0,VHB =Y A eviB . (4.3)
=0

For the field Q/, ., the wave equation is coupled to higher derivatives of B,,. The
calculation below is rather ad hoc, and depends on some rather miraculous algebraic
cancellations. Currently, there is no justification, formally or heuristically, on why

such a wave equation should be possible. Indeed, a more detailed understanding of
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the mechanism through which this wave equation is obtained may greatly contribute

to our understanding of stationary black holes.

Proposition 4.1.2. Where it is defined, Q.,., satisfies a wave equation of the form
0,9 =v1A; ® Q + vy ®VQ' + v3 A3 ® B + v Ay ® VB + 0545 ® Vv*B

First it is claimed that it suffices to demonstrate a divergence type equation.

Lemma 4.1.3. Let Sypeq be an anti-self-dual Weyl field which satisfies

va‘gabcd = u7bcd ’ (44)

where Jyeq 15 some source term, then Sueq Satisfies an inhomogeneous wave equation.

Proof. Since Sypeq 18 anti-self-dual,
a i a ef
VSaped = §V €abef ST cd

which implies

1
V[eSab}cd = _ggeabkjkcd = \7e/abcd :

Take the divergence
O0,Sabcd + VVaSheca + VVSeaca = VT nped
and commuting derivatives
O,Sabcd = VT mpea + [Vay VESeca + [V, VE]Seacd + VaTbed — VoTucd
as claimed. O
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We also have a small computational lemma which will also be useful independent

of the proof of the proposition.

Lemma 4.1.4. The scalar P', whenever it is well-defined, satisfies
P’ d rab
/ a
—V.P' = ﬁcdmbt F* . (4.5)
Proof. Recall F2P"* = —(4Z' — 2M)?,
FN Fap P+ 2F2 PPV P = —A(4E' — 2M)(qe + iqs)Hact"

using (2.18),

2(4=" — 2M)(qe + igB)
P/3f'2

P’ -
—VCP/ = E(Cdmb + gdcab)fabtd + Hdctd .

Observe that

1
M Fay = 5(g © T) " (P_F)ay = T F* + Ty F*

— 4(7:(wszzf-:L‘a 4 Hazﬂyzfva)
_ 47:(1”2(((1]5 + iQB)fzz _ B;cz)fm N 4Haz7:fyz(3/wy + (42/ _ QM)Hwy)

4= —2M qe + 9B
_ 4f_}:lwzf‘;ta ) 4Hazf}:(yz p— ﬂwa(gE T ZqB):,EQ N HQfF{wa(4§/ o 2M)
4= —2M **  qp +igp 4=" — 2M qe + 9B
Since
(42" — 2M)*H? = (qp +iqp)*F* 4+ B? — 2(qg + iqz)F - B
we write

o 47__[wzf33a 47__[azfyz " 2ﬂwaf‘zy
R Y =) Ve s Yt
2(QE + ZQB>(4E/ — ZM) r’:{wa
o pA
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where in the second term on the right hand side we replaced

(QE + ZE]B)fyz - B/yz
= —2M

Hazﬂyz — r):laz

and liberally used multiplication properties of anti-self-dual forms. Noting that by
construction the expression should be antisymmetric in the w, a indices, one sees that

by (2.4c), the first three terms on the right hand side sums to zero. So we have that

2(qE' + ZC]B)(4E, _ QM) ﬂwa
pra )

£V F,y = — (4.6)

and

Pl
—-V.P = ﬁcdmbtd}"ab
as desired. O

As seen briefly in the proof above, some basic strategies involved in the computa-
tion include (1) the ability to exchange F,;, and H,p, (up to scalar terms) by sacrificing
B!, and (2) applications of multiplication properties of anti-self-dual forms (as dis-
cussed in Section 2.1.1). The best example of the strategies is the derivation of (4.6)
above. The most difficult term in the computation of V*Q/, . turns out to be the
divergence of the Weyl curvature, which involves derivatives of the stress-energy ten-

sor. This term gives the only contribution (in the final expression) of terms involving

VB

Proof. (Proposition 4.1.2) By Lemma 4.1.3, it suffices to show that under the stated
conditions, Q!, , satisfies a divergence equation with source term depending linearly

/ / /
on Q, .. B, and V. B 4.
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The goal is to calculate the divergence

3VaeP - 12P'(qg + igB)H*,
=  aar f f aoc —_

= —ang T B Javea + (4Z/ — 2M)2
3P

2
Y 2€xaa t:c c a “ c __Zac SAVA e
E’—QM( vtoFed + Far VOFeq 3 bedF V:Ff)

A Q;bcd = vULC,tJLbcd - (f®-7r>abcd

/

T 4+ T4+ Ty — —
R A =Yy

(Ty+ Ts + T)

term by term. Immediately, by (4.5)

3P . 2P F?
= abed(Q Yt Fry + ————F"%,,) . 4.7
f‘2( E/_QM)(F(XJ‘?) bd<Q fy"i_ ) ( )

L= = oM

To consider Ty, recall from (2.15)
V“Cabed = Leagn(VT}')
expanding from the right-hand side
VIT] = 4V (Hy H™)

and since we act on it by the projection operator P_, it suffices to consider the

anti-symmetric, anti-self-dual part of this expression. By Maxwell’s equations

%V[QT;” = 2VIHMFH,,, — 2HMIV I,
= —Vkﬂthbk + Hhkngbk - ﬂngthk

h h h
:LZ ‘f'LZ _ng~

In the following computation, lﬁgh will be continuously redefined to include all sym-
metric and self-dual parts of the expression, while Lgh will contain those terms of

interest. It is clear that the first term on the second line in the equation above is
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self-dual, hence will be grouped into Lgh. It suffices to consider L;‘jh = H"VIH,,,.

Now,
—4 qp)H*t, 2 qp)(C™ E¥y )t — VIB,
VIH,, = (qp +iq)H™t, Hur, + (ZE +iqB) (C™p + E4) b (48)
= —2M
So
Lgh _ 2(qE + iqB)(ngbk -+ ngbk)txﬂfk — (qE + Z'qB)TbhHIgtx — ﬂh’“vngk '
’ 4= —2M
Consider the following simple identities:
T e = AH " H 4o Hae = H*Hae (4.9)
_ 1 _ _
TH ey, = =™ Heyor = 390 Hy (4.10)

2

the second one implies that

ATy H™ = guH"y — 9y H"w — g Hye + g Huwe + 92 Hyw = 420, v H."
Therefore, with congruence = up to terms that can be thrown into ,Kf,’h, we get
S T A G L N L Y e L
Now, to make use of the anti-symmetry in the g, h indices, note that

1 l
Xa[chd] = gebcdeeefghxafxgh = Eeabcd'X‘2

which implies

XapXoga = gEabchQ - §Xad)(bc -
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We can evaluate

TynHge = —4HH 1 Hgla

= —Hyk(%GkhngQ - 2Hk;thg)

1 - - _ 1
= _§H2 (gthgx + gngxh + gy:cth) - ETnyhg .

This implies

Ok gdgbk o Tb[gr)f(h]d

and
Lok 2(qe +iqp)C™ %t H'™ — HMVIB,,
b = —2M '
Expanding C%y,
¥ - 3P - _
ey, = TR Q™ + m(}_®7)dgbk7—lhk

3P’

__ q7hk ~dg
=Rt TE o e — 2

Now, considering the anti-symmetric part

(F@f)d[gbkﬁh]k _ f‘d[gfbkﬁh]k . leId[gbkﬁh]k
3

_ 1 _
— fd[g]:h]kfbk . §f2zd[gh]kfbk

_ % FRedohh % FlbghF, % Fpdotl
1 = 1 — 1 _

o~ — pdk rhy T, F2dghk T F2 qdlh ]
5 bk T o1’ € bk T 27 9 b
1 - 1 _

= éfbk]-"hg}"d’“ + éfzzghd’ffbk

1 - _
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(f@.}t)dgbk((qE - iqB)&fhk - B/hk) .



So

Tl = Vacabcd = 4chgthh
8(qe + iqp) Loagn "™ Qyyt, AT H" V9B,

- = —2M 4= —2M
24(qE + iqB)P'chgh (:F@f)xgbkglhktx
(42 — 2M )2 (42 — 2M)
12P'(qg +iqB)(qe — iqB)
(45— 2M)2(4Z' — 2M)

(:F@f)cdbkﬁxktx

and we can conclude

12P'(qg + igp)H™t,
(4= — 2M)?
8(qe +14B) Leagh H"* Qs ALege H'*VIBy,
= —2M 4= —2M
24(qp + iqB) P Leggn (FQF ) 9y B,
(427 — 2M)2(4Z' — 2M)
12P'(qp +iqp) Bk

(42 — 2M)? (F&F ) =331

+1 1
= %@41 ® Q/)bcd + = o Ay ® VB’)bcd (4.13)

Yk

(gr + igp) P’ :

- B )y
(4 — 2M)2(4=' — 2M) (s ® B')ocd

Tl - T3 = vacabcd - (F®F)abcd

(4.12)

)t

_|_

as desired.
For T}, we have

xra xr

For T5,
fabvafcd = (Czacdfab + gxacdfab>tx
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Now,

1 _
EIaCd‘FCLb = _i(g O T)lmcdz-xalmfba
1
= _Z(glchd + gmdLie) (g F™ — g™ — g F A+ gy 4 gp F)

1
= _i(gfcch]mfbm — TeFap — goeTagmF ™" — TyeFa” + gy F" 1 Lapm) -

Rewriting Ty, = =557 Ho (42 + iq8) Fy: — B,.),

—2(4Z' — 2M)E™ (qFuy = (A1 ® B) i — gt Hap(qE + iqp) F>
— gicHau(qe +i98)F* + gy Hae(qr + iqp)F>
+ AH™ (g + iqp) FueFap + 4H" (g8 + iq5) FreFa”
= (A1 ® B) peq + 2(q5 + iqp) (H™* Fop, + HopF™) Fea

= (.Al ® B/)Ibcd + (43/ — QM)TZ;EJ:Cd

and
1
E* aFap = —=TFF. —_ B - 4.14
a7 ab 51 d+4E,_2M(~A1® ) bed (4.14)
On the other hand
3 /
xa o lrza S za
C™caFap = Q" caFap + m(}—@)}—) cdFab

the second term of which we write

- 1
(FRF)™ gFup = —F2gF Foa — gfzzmcd}_ab -
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For Tj,

FAINOFop = 207 f Flt, 4 267 1 FIt,

4P F? 4(qp +iqp) (4= — 2M) -
_ xa 7:ef Fra B B za
=207t T pr e
Lastly, observe that for T3,
qe + 198 ~ > 1 , gr + 198 9 —
= (FOF)apedH™ = —=———— (A1 ®B)%pea— T Foa— —o—o— F2T e H™
= —gag O e =g OB v P g m oy T L

so that after a bit of simple regrouping of terms,

3P

(Ty+T5 4+ T6) = v1. A ® Q' + v Ay @ B

as desired, where v, depends only on P’ and (4= — 2M)~!. Combining this with

(4.13), we obtain the desired result. O

In view of the previous two propositions, if the vector & = (B, VB, Q abcd)
is defined to be a smooth section in Ty M & TYM @& TY M, then S satisfies a wave

equation of type (4.1), namely

DQS = (U1A1> ® S + (UQ.AQ) ® VS (415)

where (v,A,) stands for matrices representing linear transformations on T M &
TIM @ T) M with entries consisting of smooth geometric tensors multiplied by co-
efficients depending on P’ and (4=’ — 2M)~%. It is to this S that we will apply the

Carleman estimates.
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4.2 Initial value on the bifurcate horizon

In this section, the geometric constraint of a non-expanding bifurcate event horizon
and some technical assumptions prescribed at the bifurcate sphere will be seen to
together imply the vanishing of B, and Qg.q on the event horizon. We will use
the notation \Ifglc) for the complex scalars associated to the Weyl-field Kypeq in a null
tetrad, similarly the notation ng) for complex scalars associated to a two form G,,.
See Section 2.4 for the definition of the scalars in terms of tetrad directions. Notice
that we have G2 = —4(T{)2 + 47919,

Recall from Section 2.5 that we assume our space-time admits a smooth bifurcate
horizon which is non-expanding (see also Section 1.3 for justification). We were able
to conclude that TgH) = \Iléc) = \Ilgc) =0on HT, and that \I/(()C) and T(()H) are constant
along the generators of H=.

Now first consider F,,. Since Tgf) = —F(m,l) = —g(Vut,l), and t € THT, we

have g(t,1) = 0. Therefore we have
T(lf) =g(t,Vul) =0, on H*

by the vanishing of # and ¢. Similarly T(_ji) = 0 on $H~. Therefore by the same
argument as in Section 2.5, B/, is a free Maxwell field such that T(fl/) |5+ = 0, and thus
T(()B/) is constant on the geodesic generators of the event horizon. Now, if we assume
that TéB/) vanishes on the event horizon, we see that the Maxwell equation (2.24b)
implies (D — F124)T(_Bll) = 0 (similarly for T_;), and therefore Tfl/) are constant along

generators of the event horizon. We have thus demonstrated

Lemma 4.2.1. Let (M, gu, Hap) be a stationary asymptotically flat solution to the
Finstein-Mazxwell system. Assume the space-time admits a smooth non-expanding bi-
furcate event horizon H*. Define =’ as in Theorem 3.5.1. Then a sufficient condition

for B!, as defined in (3.19a) to vanish identically on the bifurcate horizon is T(()B,) =0
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and that |qp + iqe|?/ P’ = 2=’ on the bifurcate sphere.

We will argue in a similar fashion for @', ,. Consider the Weyl tensor (FQF )aped-

abc

It is easily verified that!

FRF F
v = (g

F&F F)ap(F
AR

F&F L (P (F F
g = 3T 21

In particular, \I/(i];@)f) = \I!ﬁ@E) = 0 on H*. It therefore suffices to consider \If(_Qzl),

9 and \If(()gl) on H*.
Now assume the conditions for Lemma 4.2.1 is satisfied, so we can assume B/, = 0

on the bifurcate event horizon.

Lemma 4.2.2. Assuming the basic geometric set-up as in Lemma 4.2.1. Also assume
the conditions are satisfied such that B., = 0 on $*. Then \I!(()Q/) s constant along

the generators of the horizon.

Proof. We separately consider the case of qg + igg = 0 and g + igg # 0. As
discussed in Section 3.5, in the case of vanishing charge, = = 0 by definition, and
the assumption that B/, = 0 leads to that H, = 0 on the horizon. This implies
that F,, obeys a source-free Maxwell equation when restricted to the horizon, and
in particular T(()f) is constant along generators of the horizon, and thus also P’. By
definition of Q. ,, if follows that \If(()g) is constant along generators of the horizon.

In the case of non-vanishing charge. The vanishing of B/, allows us to re-write

_ 3Pl \I/(]:®]:) _ _Pl(4é/ - 2M) (T(H))2
= —2M " (ge + iqp)? '

Indeed, this is one of the reasons behind the definition of the symmetric spinor product to start
with.
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Noticing that T(()H) is constant along the horizon, it suffices to consider DP’ and
DZ" on $*. In the latter, D=’ = (qr — iqp)H(t,1). Using that ¢ is tangent to the
horizon, immediately D=" = 0. Similarly, in the former, using (4.5), we see that
DP" o Capegt®I°F? \If(()c)Tgf) + \IJEC)Téf) + \I/éC)T(_]? and hence DP’ = 0. Therefore

we conclude that \If(()Q,) is constant along generators of the horizon. ]

With this in mind, using the reduced Bianchi identities (2.27a, 2.27b), we can also

prove a criterion for the vanishing of Q' , on H*.

Lemma 4.2.3. Let (M, gu, Hap) be a stationary asymptotically flat solution to the
Finstein-Mazwell system. Assume the space-time admits a smooth mnon-expanding

"“as in Theorem 3.5.1. Further assume that B,

bifurcate event horizon $*. Define =
vanishes on H*. Then a sufficient condition for Q., ., as defined in (3.19b) to vanish

wdentically on 9T is that \I/E)Q/) = 0 on the bifurcate sphere $.

Proof. Recall that \IJ(_QQ,) and \IJ(_Ql/) vanishes on $)y. Therefore in suffices to demon-
strate that their D derivative is proportional to themselves. Again we treat the cases
with and without charge separately.

Assume first that the charge vanishes. By the same argument as in the proof of
Lemma 4.2.2, we have that H,, vanishes on the horizon and F,; is free Maxwell on

the horizon. Now consider

3P F&F 3P F F
(D — Fm)(mq’(—l@ N = —mﬁ) (D = Ty20)TY
3P (P (5 4 9my®
=5 QMTO (0 +2m)Ty
3P 1. .
S — T R S A L

Observe that (P')* = —(4Z' — 2M)?/F? = (42’ — 2M)2/(2T(()f))2. Immediately

- P (F)\2 LA (FIN2Y D i e (P 2
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if the derivative V is taken in T$™. This implies

3P F&F s oo 2P F
(D~ Fm)(ﬁ‘l’gfg )) =(0+ 3ﬂ)?2M(Té ))2
5.4 3 3P F&F
= 0430 gy W)

which, in view of (2.27b) and initial assumptions in the statement of the lemma,
means that (D — F124)\IJ(_91/) = 0, and hence \IJ(_Qll) =0on H'.

For \I/(_QQ/), it suffices to observe that Proposition 4.1.2 implies that Q/, ., is a Weyl
field whose source depends on itself, B!, and V .13/,. Therefore it satisfies an equation
similar to (2.27a) with additional source terms (and no terms coming from the Ricci
tensor). By the vanishing of all other components of \IJEKQ/), and the vanishing of B/,

it is clear that \I'EQQI) satisfies a transport equation of the form
D\I/,Q = A\II,Q

where we can remove the dependence on the VB, term because, as seen in (4.13),
that term is also linear in H,,, which is seen to vanish on the horizon in the case
without charge.

Now consider the case where the charge does not vanish. By the identification
of (qg +iqp)Fa = (42" — 2M)Hyp, a similar computation can be performed. First

remark that as in the proof of Lemma 4.2.2, DP' = DZ' = 0.

. 2 —1 )
(gr +igB)
P'(4Z — 2M

_ 3P u J 100 (D = Ty 1
(qe + igB)
3P/ (4= — 2M) -
PR o
2(qr +igB) -

3P 3
(D =Tia0)(5—577Y5") = (D = T

Now note that (P')™ = —H?/(qg + igz)* under the assumption of B!, = 0. So just
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as before

3P 5 - _ 9p
(D =Tia)( 57, ¥0™7) = (42 = 2M)(6 + 37) (15

= —2M “ g + ign)?
Now, let us re-examine Proposition 3.3.2. In it, to demonstrate that V.(P~!—2Z) = 0,
we need that Q. H®t? = 0. For the proposition we assumed that Quu.q vanishes
in all components, but in individual situations, it will not be strictly necessary! For
example, consider 20Z" on H*. Since the H(l, m) component vanishes, the only com-
ponents of Qg H®t? to consider are Q(t,m, [, 1) and Q(t,m,m, (), both of which are

already known to vanish on $§*. Hence on §* 20" = |qg + igp|*d(P’')~'. Using this

fact
= 2lge —iqs)* <5, lae —iqB]? < (7)o N BrEA(H)
0
SO ) N
3P gV C L BPUTER 0P
(D =T (G5—g3p) = ~0+30D(G5—557) — 5 10 0(T57) .

Observe that

IENE 54 (P/)4 —/ c—/ 4 —
SPP = ) A§EI5E = — H(t,m)H(t,
PR 7 1Lt m)H(tm)

Since H(t,1) = 0, 8H(t,m)H(t,m) = H*>. So this implies that §P'6P' € R_. In

other words 6 P’ = —6P’. A little bit of algebraic manipulations gives

sy olae+igs*P’ 1 <1
_QFTO oYy ") = _QTE(SE
. 1
= 4|qp + igp| i P
. 1 -1
= 2las + i 550 b

P -1 _
= 27Mr{M = b0 — 25T
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to which we now apply the Maxwell equation (2.24b) and compare to the reduced
Bianchi identity (2.27b) to see that (D — ') ¥'¢) = 0.

For the term \IISQQ/), we argue the same as in the charge-less case. But now we
need to control (by examining the divergence relation) chghﬂhkvngkmbfmd since
Hap no longer vanishes on the boundary and V. B!, is not a priori controllable (may
contain derivatives transversal to the null hypersurface). A closer examination reveals,
however, that the only non-zero terms from 7.4, is Z(l,m,l,m), so the only term

carrying transversal derivatives of B), is
tr Z(L,m,l,m)H(m,-) DB (m,-) .

By inserting the proper pairs from the null tetrad to compute the trace, it is imme-
diately obvious that the only term for which the H term does not vanish is H (1, m),
whose pairing requires us to evaluate DB'(m,m) which is always zero as B’ is con-
structed to be antisymmetric. Hence \IIS%), also satisfies a transport equation of type
DV _5 = AV_,, which by the condition that \I/(_Qz/) vanishes on the bifurcate sphere,

implies that \IJ(_%/) = 0 on the horizon. O]

Remark 4.2.4. One can also in principle demonstrate the vanishing of the \IJ(_%,)
components by considering the Bianchi identity (2.27a). The computations, however,

18 not any more enlightening then the argument given herein.

Now we give an example of sufficient scalar conditions (these are what we will use

in the sequel) for B, and Q/,., to vanish on the horizon.

Corollary 4.2.5. Let (M, gap, Hap) be a stationary asymptotically flat solution to
the Einstein-Mazwell system. Assume the space-time admits a smooth non-expanding
bifurcate event horizon H*, and assume that the stationary Killing vector field t only
vanishes on a discrete subset of $o. Define =’ as in Theorem 3.5.1. If we further

assume that on the bifurcate sphere $g:
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o 4=/ <2M
e B? =0, and

o (4= —2M)O.(P)~! = 2F,.t*, when the derivative is taken in directions tangent

to ,60.
then Q.. and B, vanishes on H*.

Proof. The first condition is necessary in guaranteeing that the quantities which de-
pend on (4Z' —2M)~! are well-defined. Notice that it is trivially satisfied in the case
with vanishing charge.

Observe that due to the vanishing of the Y5, B2 = —4(T{”)? and immediately
the second condition implies that T(()B/) =0 on .

A quick computation analogous to that for (4.5) shows that the third equality

implies )
(4=" — 2M)
Pl

Caeapl " F0 = 22 Fyut® .
Now, noticing that ¢ is tangent to £, and that the only non-vanishing component of
Fap on the bifurcate sphere is T(()F), we get

(42" — 2M)

5 o(tm) by =2(T57)g(t,m)

which, by the assumption that ¢ only vanishes discretely, gives (EIE?M ) \IJ(()Q/) =0. In

particular, by the first condition assumed in the corollary, \I/éQ/) = 0.

By Lemmas 4.2.1 and 4.2.3 we have the desired result. O]

Remark 4.2.6. In the case with non-vanishing charge, the third condition can be
replaced by requiring |qg +iqg|*/P' = 2=, a form more consistent with the conditions
given in [14].

Remark 4.2.7. The first condition in the Corollary, that |4Z'| < 2M, is consistent

with the physical assumption that the charge of the space-time is smaller than the
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mass. Indeed, as we have seen in Chapter 3, the condition can be heuristically re-

written as |qe + iqg|?/|P'| < M. In the Reissner-Nordstrom case, P was seen to be

the radius r. At the event horizon, |qp + iqp|*/P' — M = —\/M? — |qi + iqp|> < 0.

This also illustrates why the condition 1s not necessary when the charge vanishes.

4.3 Carleman estimate

In the proof we will use the generalized Carleman estimates due to Ionescu and
Klainerman [14]. Here we collect the statements and definitions.

Let By be the open ball of radius 1 centered at the origin in Minkowski space.
Assume we have a coordinate chart II*° from B; to some neighborhood of 5 € M,
with the image of the origin being xy. Denote the image II"°(By) =: B(zy). By
abuse of notation, write g also for the pull-back of the metric (II®g) on B;. (In the
following, we will often abuse the diffeomorphism II*° that, functions and tensors
defined on the neighborhood B(xg) will be identified with their pull-backs to B; and
vice versa.) Let B C B; be an open set, and let ¢ be a complex-valued smooth

function on B. Let j be a non-negative integer, we will write

0 0

Ozt Ox%

0V¢(z)] = Y |

()él,...7()éj:1

¢(2)| (4.16)

for the size of the j-th derivative of ¢. This is necessary as the geometric norm is
Lorentzian and is not positive definite.
Let V be a smooth vector field on By. Expressed in coordinates, we can write

V=31 VS0 We assume there exists a number Aq(V) such that

4 4
up Y Y [0IVI < A, (4.17)

S
Br 520 g=1
in other words we control the norms of the first 4 derivatives of the coefficients of V.
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Definition 4.3.1. Fiz 0 < ¢; < 1/Ao(V). A family of weights h. : Bao — Ry
defined for 0 < € < €1 is called V-conditional pseudo-convex if for any € € (0,¢€1) the

following are satisfied:

he(0) = e | supzeqa )| <efer,  |V(he)(0)] < €. (4.18a)
Writing V' for the metric connection, and taking contractions relative to the metric g
VheVPhe(VaheVihe — €V h) om0 > €2 (4.18D)

And I € [—€; Y, 1] such that for any tangent vector at TyB, 2404:1 X“%,

4
&) (X < pg(X, X) = Vi xhe + € *(|g(X, V)P + [Vxhe)o=o - (4.18¢)

a=1

Definition 4.3.2. A function e, : Bao — R will be called a negligible perturbation
of

sup [0We,| < € (4.19)
B_ 10

for 7 =0,...,4.

For justification of the pseudo-convexity condition given, see Remark 3.2 in [14].

With the above definitions, we have the following Carleman inequality.

Proposition 4.3.3 (Ionescu-Klainerman [14]). Fiz the vector field V and the constant
Ao(V). Fiz €, as in Definition 4.5.1, and let {h.} be a V-conditional pseudo-convex
family of weights, and {e.} a family of negligible perturbations. Then there is a
€ (0,¢€1) sufficiently small and a constant C. sufficiently large that for any X > C.
and any ¢ € C5°(Bew),
Mo

Ol + lle™Me[0Wgll| 2 < CA™ V2l Tyl 12 + € Clle™™V (9)] 12, (4.20)
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where fo:=1In(he + ec).

4.4 Uniqueness of Kerr-Newman metric

In this section, we give a proof of the conditional uniqueness of the Kerr-Newman

metric among smooth stationary asymptotically flat solutions to the Einstein-Maxwell

equations. First we give the assumptions. Let (M, gap, Hap) be a smooth space-time

solving the Einstein-Maxwell equations. Let ¢ be a smooth Killing vector-field.

(AF)

(SBS)

We assume the solution and the vector field t is stationary asymptotically flat.
See Remark 3.1.1. We can rephrase the decay condition (slightly strengthened)
here, following [14]. Let M be the stationary asymptotic end diffeomorphic
to R x (R?®\ Bg) for some large radius R. Assume that in the local coordinates
(s, 21, 2%, 23) given by this difftomorphism, we have d, = ¢, and that with

r= @+ @2+ @7,

g(t,t)=—-1+ ¥ +0(r?), gz 2%) = Sap +O(r 1), g(t,z%) = O(r™?)
(4.21)

for some M > 0.

We define the black hole, white hole, and exterior regions 8,20, as in Section
1.3. We also assume that there exists an embedded space-like hypersurface >
diffeomorphic to R? \ By ;. We ask that Yo N M™ is equal to the s = 0 slice.
Denote by Tj the future directed unit normal to . Assume that every orbit

of t in ® is complete and intersects ¥g ND transversely.

Let H* and H, be defined as before. Assume that $, C ¥y and is equal to the
image of the sphere of radius 1 in R* \ Bj, under the diffeomorphism given

above.
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Also assume that there exists a neighborhood O of § such that $* N O are are
smooth null hypersurfaces that are non-expanding and intersect transversally in
$o. We will abuse the notation to also denote $=NO by H* where no confusion
is possible. Also assume that t is tangent to $* and does not vanish identically

on $g.

(T) We also need some technical conditions on $)y. Define =’ as in Theorem 3.5.1,

and P',B., and Q, , as in (3.19¢,3.19a, 3.19b) wherever it makes sense. We

a

require that on the bifurcate sphere

B? =0 (4.23)
(4= —2M)Vx(P) ' =2F(t, X) (4.24)

for any X € T'9, and that the following are each satisfied at some (possibly

different) point in 9o

IM 2

Pl

qe +19B

2
=+ 1=%( 7

) — (4.25)

R(P)>M (4.26)

Remark 4.4.1. That the assumptions (AF) and (SBS) are reasonable have been, the
author hopes, demonstrated in Chapter 1. See also Remark 1.1 in [14].

The technical conditions (4.22) and (4.23) are those used in Corollary 4.2.5. In-
deed, when =/ # 0, (4.22) implies |='| > RE' > 2|Z|?/M, which implies 4|='| < 2M.
This condition should be compared with condition (1.7) in [14]. That this condition
has to be prescribed on the entire bifurcate sphere and not just at a point is a com-
plication introduced by the Mazwell structure. The condition (4.24) is a relazation of

the condition (1.6) in [14] (in essence the former is the latter’s derivative). Observe
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that if we have a priori knowledge that the Mazwell field vanishes identically, (4.24)
and (4.25) together implies condition (1.6) in [14]. In general, (4.24) and (4.25) are
the minimal conditions required to recover the crucial Lemma 7.4 in [14]; see also

Lemma 3.3.7 in Chapter 3.

Remark 4.4.2. The technical condition (4.25) is necessary in view of the local version
of the isometry theorems (see Theorem 3.2.1 herein and Theorem 1 in [23]), as they
essentially fix the one remaining free constant (Cy in Theorem 3.2.1) to allow the
derivation of Lemma 3.3.7. This constant can be interpreted as carrying information
from spatial infinity; it is through the precise value of this constant that we can use
the condition that our local neighborhood can be embedded in a space-time that is
stationary asymptotically flat. One should compare with it the constants M and qg +
iqB, which can be made arbitrary (as long as M > |qg +iqp|) without impact on most

of the proof.

Remark 4.4.3. The conditions (4.22) and (4.26) are relatively mild: they are mani-
festations of the requirement that the black hole is non-extremal: that M* —a® — |qp +
iggl* > 0.

The alignment conditions (4.23), (4.24), and (4.25) are the main technical as-
sumptions. They represent some sort of rigidity assumption on the bifurcate sphere

of a black hole solution. It is hoped that they may be eventually removed.

Lemma 4.4.4. Under the assumption (AF), (SBS), (T), the quantity R(P') is con-
stant on $HE, and by (4.25) and (4.26) we have M < R(P') < 2M on $y. As a

consequence Q., . is well-defined in a neighborhood of §.

Proof. Let xo be the point on which (4.25) holds. Since ¢* is space-like, this implies
that |P'| < 2M at the point by rearranging the algebraic identity. Therefore P’ is
well-defined in a small neighborhood N C $),. Corollary 4.2.5 implies that @/, ,, B,

and their first derivatives vanish on N. In view of the computations leading up to
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Lemma 3.3.7, in particular (3.5), one sees that the same decomposition holds and
therefore R(P’) = y is constant on N. Therefore P’ is well-defined on the entirety of
$o. By (4.25) and (4.26), it is then clear that M < R(P') < 2M. O

We now state the main theorem of this chapter

Theorem 4.4.5 (Conditional Uniqueness of Kerr-Newman). Let (M, gop, Hap) T€p-
resent a smooth stationary space-time solving the Einstein-Mazwell equations. Let
t denote the stationary Killing vector-field and assume that Hay is also fived by the
symmetry generated by t. Also assume (AF), (SBS), and (T) as above. Then the

exterior region D € M is everywhere locally isometric to the Kerr-Newman solution.

Here we’ll give a quick overview of the method of proof. By the assumption
that §T intersects transversely at the bifurcate sphere and the assumption that the
black hole is non-extremal, we can apply the V-conditional Carleman estimate with
V' being the zero vector field, and the pseudo-convex weights given by the double-
null foliation, in a small neighborhood of §),, which shows that B/, and Q/,., both
vanish in a neighborhood of $y. The vanishing of B/, and Q!, , implies that we can
use the Characterization Theorem 3.2.1, in particular Lemma 3.3.7. The conditions
for applying the lemma are all satisfied in view of the technical assumptions (T).
Therefore in the neighborhood we obtain control for y = R(F”).

To extend beyond the first neighborhood, we again apply the Carleman estimate
now with V' being the Killing vector field ¢ and the pseudo-convex weights being the
radial function y. By construction y is “increasing as we get away from the black
hole”. Since Vy = VR(Z')~!, we see that condition (4.22) will be satisfied uniformly,
and we will have control on (4=’ — 2M)~! throughout. Therefore by looking at the
form of the wave equation (4.15), we can continue the Carleman estimate as long as

P’ remains bounded. But by technical assumption (4.25), and the argument given in

Section 3.4, P’ cannot blow-up at any finite Riemannian distance from the bifurcate
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sphere (more precisely, using the Riemannian metric on ¥y, y cannot blow-up at any
finite distance from $)), and so we can cover the entire exterior region.

The remainder of this section will be used to realize the above heuristics.

4.4.1 The first neighborhood

First we give some quantitative control on the double null foliation constructed in

Section 2.5.2. Recall that O, is defined as a neighborhood of §) such that the optical

functions |ul, |u| are bounded by e. Fix € as in Section 2.5.2 such that Q > 1 on
O,. By assumption (AF), ¢ intersects ¥ transversally, so |g(¢,Tp)| > 0 on g ND.
Therefore we have that for any small 0 < € < ¢y, there is a corresponding large

constant fle such that

1
lg(t, To)| > T Vr € (ZoND)\O. . (4.27)

With a possible reduction on €y, we can require that there exists a constant Ag such
that

+

SIS

S AO , Vr € Oeo N EO N3 s (428)

ISR~

(this reflects the fact that Xy is space-like and the level-surfaces of w,u are null).
Similarly, in view of Lemma 4.4.4, we can require that ¢; is chosen small enough such
that P, B/,, and Q., is well-defined on O, .

We now construct a suitable set of coordinates in a tubular neighborhood of 3
following [14]. By possibly enlarging the constant Ay above, we can arrange so that

at every point o € Yo ND, there exists a diffeomorphism I1%° from the ball of radius

1 By, centered at the origin, to a neighborhood B(zg) C M, with I1*°(0) = ¢, and
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satisfying

6 4
sup  sup Z Z 10V)(T1%0g) . | + [0V (TT%0g )y < Ao (4.29a)
$0€20m©$€31 ,] 0ﬂ7,y 1
6 4
sup sup ZZ |09 (T1201)P| < A, (4.29b)
z0€XoND z€B1 ) 8=1
5 4
sup  sup Z Z |0V H) 05| < Ag (4.29¢)

where (II{°g)s, is the matrix representing the pull-back of the metric g, similarly
(ITxo g)g,i is the inverse matrix, (I12°¢)” denotes the codrdinate coefficients of the vector
field on Bj representing the Killing vector field ¢, and (II°H),g is the codrdinate
coefficients of the pull-back two-form corresponding to the Maxwell field. Such a
choice of diffeomorphisms is always possible on any compact region; that we can do
it for all of ¥y N D is due to asymptotic flatness. Now let M := Us,noB(z9). We can
arrange for M to be simply connected.

The compactness of g also allows us to assume that A, is chosen so that

6
0
sup sup Z |8(J H””Ou|—|—|83)ﬂxou| +Z< I u|” 1+| H“”Ou| 1) < Ay

ToEN TEB,

Jj=0

(4.30)
By compactness of ) again, we can require that A, is chosen such that we have

“room” in (4.22) and (4.26):

1 2
R= > M(l + Ayl Ve € Ho (4.31a)
NP > M(1+ A for some z( € $ (4.31b)

Lastly, we also require Ag > ¢;"'. For the rest of the proof, ¢y and Ay will be fixed
constants. We will also write C'4, for an arbitrary constant that depends polynomially

on Ay. Between different expressions C'y, may be different.
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Remark 4.4.6. The control given by (4.29) implies that we have control of the

coordinate expressions of the following in terms of a polynomial function of Ag:

o F., up to five derivatives,
e the first six (but not the zeroth order) derivatives of Z/,

o when |4Z' — 2M| > Ay', and when F? > Ay?', control of P' and its first five

derivatives,
o B!, up to five derivatives,

o when |4Z' — 2M| > Ag', and when F? > Aj', control of Q... up to five

dertvatives.

Lastly, we observe that by Taylor’s theorem with remainders, if X is an object with
which we have control of first k derivatives, and assume that X wvanishes on the
bifurcate horizon, then we can write X = uuX' for some smooth function X' whose

first k — 2 derivatives we can control.

Now, let the weight function h, = ¢! (u+¢€)(u+e¢) be defined in O, for 0 < € < €.
Also let N*0 : B(xy) — [0, 1) be the function

N7 () = |(I17) "} (z)[* (4.32)

where the norm is the Euclidean norm. The following Carleman estimate is a conse-
quence of the bifurcate null geometry, and does not depend on the Einstein-Maxwell

equations.

Lemma 4.4.7 (Ionescu-Klainerman, see Lemma 6.2 in [14]). There is € € (0, ¢€p)
sufficiently small and depending on Ao, and C. sufficiently large, such that for any
To € Ho, any X > C., and any ¢ € Cee(I1%0 Beo),

Me el + e [0 g[| 2 < CA2[le D 9|12 (4.33)
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where fo =1In(he + 2 N®).

The proof of the lemma, which we omit here, is an application of the general
Carleman inequality Proposition 4.3.3 with V' being the zero vector field. Using the

above lemma, we obtain

Proposition 4.4.8. There exists r1 = r1(Ag) > 0 such that Q.,., and B, ., vanishes

abc a

n Oy ND.

Proof. The proof is a direct adaptation of the proof for Proposition 6.1 in [14]. We
include it here for completeness. Let € = ¢(Ag) be fixed by the previous lemma.
Write S as the vector valued function whose entries are B'(0,,03), VB'(0q, 03, 0,),
and Q'(0,, 03, 0,,0s). By definition of ¢, S is smooth and satisfies a wave equation

with smooth coefficients. We therefore have the estimate

048]0 < Cap [0S e + |S]eee (4.34)

in Bo.

To apply the Carleman estimate, however, we need a function with compact sup-
port. So we apply a cut-off to show that S vanishes identically in B.o N®D. Fix xq
in 9, and let n : R — [0, 1] supported in [1/2, 00) and equals to 1 on [3/4,00). For

arbitrary 0 € (0, 1], define

8% = Slon(uu/8)(1 —n(N*™ /) = Si>* . (4.35)

By construction it has compact support in B.o so we can apply the Carleman esti-
mate.
Compute

0,8 = i170yS + 2V SV, + SOy .
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By letting A be sufficiently large in the Carleman estimate, we have that

e eS8 e 2 <

C. (Il | VSV 11 oo || 2 + [|e™¢

Slew (10477 + [0V | 2) -
Now observe that we can define two sets
G? = {x € Bao ND : u(z)u(x) € (5/2,0)}

and

G = {1 € BaoND : N*(x) € (¢2/2,*)}

where, by construction, |0,7%¢| + [0W7%€| is supported. We claim now that
(B | + [0 < G0 s + ) (4.36)

For the term |0W7%¢| the estimate follows from the definition. For the term with the

D’Alembertian, we consider the definition
07| < 10, (Lon(uu/d))|(1 — n(N™ /e2)) + Cp(0" 1gs + o)

The only term in Oyn(uwu/d) that can give problem is when by chain rule we obtain

n"672(V(uu)V,4(uu)). But using the eikonal equations for u and u, we see that
[V (uw) Vo (uw)| = 2|Quyl
and using that " only is supported when uu € (§/2,6), we see that

167 (V* (uw) Va(uw) )] < Cpd ™ s
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as desired.

For the term V?SV,7%¢, we use the fact that since S is smoothly defined and
vanishes on $§*, we can write S = uuS’ for some smooth &’. By the same argument
as was just given,

VAV < CayCy(lge + 1go) -

Combining the computations above,

)\”Q_Afsﬁé’ey‘S’goo"ﬁQ S éGCnCAoHe_)\fe(lgé -+ 1Ge)

L2 .

Now we take the limit as § — 0, and observe that ||1gs||zz — 0, the inequality

becomes

Mle 15 n0lSle= 22 < CCyCsrlle™ e

LQ.

Now observe that by definition of the weight f,

inf e Me>supeMe
B_4oND Ge

SO

M5 sonolSle=lz2 < C.CyCsr| 16

L2

the right hand side now a fixed constant. Taking A — oo gives us that & must vanish

in Boo N3, ]

4.4.2 Consequences of vanishing B, and Q),

Let N C M ND be a connected open set containing $)o such that P’, B, Q.,., are
smoothly defined (in particular 4=’ # 2M and F? # 0). Assume that B/, and Q' ,
both vanish on A, and the technical conditions (4.22), (4.25), (4.26) are satisfied.

We observe that in the language of Theorem 3.2.1, the constants C7, Cy and C} are
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now fixed (the last because of (4.25)). Therefore we can appeal to Lemma 3.3.7 (or
analogously Lemma 7.1 in [14] in the case of vanishing charge, since B/, = 0 implies
Hap = 0 in A?) to get a constant A such that, decomposing P’ = y + iz,

,_ A2 _ A+ 9P+ lgp +igs* — 2My

neded 2
(V=S () .

Proposition 4.4.9. In N, |0Wy| is uniformly bounded by C 4, .

Proof. Consider the set N N {|P'| < 8M}. Using that |¢g + iqp|*V P = —2P"?VEZ/
(a consequence of the vanishing of B!, and Q!,.,), we see that in the non-vanishing
charge case if | P’| < 8M, we can control |0 P’| trivially. In the case with vanishing
charge, observe that VP’ = %]—"(t, +), so again in |P’| < 8 M we have direct control.
Therefore it suffices to consider NN{|P'| > 8M}. Butif |P'| > 8M, R(2M/P’) < 1/4.
So by (4.25) (which by the arguments in Chapter 3 is extended to an algebraic identity
on N) t? < —3/4. In other words, t is time-like. Since Vyy = 0 by definition, Vy is
a space-like vector on N'N {|P’| > 8M}. The uniform bound #* < —3/4 implies that

we can uniformly control

y* —2My + A+ |qp + igp|?
y2+22

|a(1)y|2 < CAO (Vy)2 - CAO

Since z is a bounded function by Lemma 3.3.7, the right hand side is bounded by a

large constant multiple of Cy, if |P’| > 8M. O

Now let N € N'ND be defined such that additionally,

y? —2My + A+ |qe +igp|* > 0 .

We will compute the connection coefficients and the Hessian of y using the tetrad

2Tt is not necessary to appeal to Lemma 7.1. In view of the definitions given in Theorem 3.5.1,
the computations in Chapter 3 can be carried through exactly if F2 is assumed to be non-vanishing.
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formalism. The condition above, by (3.17), implies that U = [,t*[,t" = $(Vy)? # 0,
where [,[ are principal null vectors defined in Chapter 3. So we will impose the
normalization condition that g(¢,1) = 1 for the local null tetrad.

As we have already computed in the proof of the characterization theorem, we
decompose V,y = —l, + Ul,, and hence that in an adapted tetrad, we have the

following conditions

9=1/P 0=-U/P
E=£=0 V=0=0
(=n i = (Vz)?/(2P'P")

(the equations in the third line follows from (2.22f) and Lemma 3.3.7). Furthermore,
we have the following additional conditions: by (2.22b), D8 = —6? — wf, so we can

solve for
M(y? — 2%) — (A + |ge +igs]* — 2%)y

f— —D pr—
w Uu/u e

(4.37)

and that

w=0. (4.38)

Lastly, we wish to compute the Hessian of y. To do so we use the formula
(V2Y)as = ealesy) — TFsae,(y) and read off the values. In conclusion, the com-

putations lead us to the following

Lemma 4.4.10. On the set N' where (Vy)? > 0, choosing the null tetrad to normalize

g(t,1) =1, we define the functions

_ Y —2My+ A+ |gp +igp/?

v 2(y* + 27) ’
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and
_ M(y? = 2*) = (A + |gp + igs]* — 2*)y

(v + 22)(y* — 2My + A+ |qpligsl’)

Then we have the following identities:

5y:5y:DZ:DZ:O7 Dy:l,Dy:—U,(Vy)ZIQU
A — 22
2 2
(Vz) R <2

and

0=1/P 0=-U/P
§=¢§=0 v=19=0
P o (Ve
T == =502+ 22)
w=HU w=0

We also have the following expressions for the Hessian of y:

(V)33 = (V?y)aa = 0 (V2y)sa = (V?y)as = —HU
(Vy)ar = (V?y)u = nU (Vy)s1 = (V)13 = —C
(V?9)az = (V?y)as = U (V)32 = (V?y)as = —C
(Vg = (Vg = 25U (P = () =0

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)
(4.47)
(4.48)

(4.49)

Remark 4.4.11. Observe that the above lemma is formally identical to Lemma 7.3

in [14].

The vanishing of B/, and Q.,., also gives us finer control on y on a subset of O,,:
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Lemma 4.4.12. There is a constant yg € (M,2M] such that y = yg on the horizon.
In addition, A € [0, M? — |qr + iqg|*), and that for sufficiently small € = €(Ag) we
have that

y >y + MCyluu

on O.ND.

Proof. By Lemma (4.4.4) we've already shown the first claim. Using that (VP)? =0
on $o, we see that (Vy)? = 0 and hence y3 — 2Mys + A + |gg + igp|* = 0. Since
ys > M, we must have that A + |¢g + igp|* < M.

Now notice that y — yg is a smooth function in O,, N D that vanishes on H*.
Therefore we can write it as y — yg = uuy’ for some smooth function 3’ whose first
derivatives are bounded by Cj,. It thus suffices to show that ¢y’ does not vanish on

the horizon. Using the identity

O,P = _P’P<M — P
we get

Oy =~ (M~ )

9y = y? + 22 9

Applying this to y = yg + uuy’ and evaluating on the horizon:

2

—  _(ya—M)=0O Nt = 2VUVuy = 2y .
y%+zg(ysa ) = Og(uuy’)| 5+ uVauy' =2y

Since we assumed that yg > M(1+ AgY), v > M C’ZOI on the horizon, and therefore

for some sufficiently small €, we have that ¢’ > M C';Ol in O, N® as desired. m

4.4.3 The bootstrapping

In view of the assumption (AF), we just need to show that S vanishes along ¥y ND.

We will here use a bootstrap argument to show that 4=" — 2M = 0, % #0,8,=0
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and Q!, ., = 0 on the stated set. Then by Theorem 3.5.1 we can conclude Theorem
4.4.5.

We define some sets over which our induction will work. Let X be the open subset
of Xo N®D where F? # 0 and 4=’ # 2M. Clearly X contains O, N D by definition.
For any R > yg define Vg = {z € X[ : y < MR}, and Ug as the unique connected

component of Vi whose closure in ¥y contains .

Proposition 4.4.13. There exists a number Ry > ys/M + Cy} such that B, and

, .
Q. veq vanish in U, .

Proof. Let O, be as in Lemma 4.4.12. B/, and Q., , clearly vanishes in it. By

construction, u/u + u/u < Ay in 3y ND N O.. So by Lemma 4.4.12,
MO (P +u?) <y —ys < MCyy(u® + u°)

on Yy N® N O,. Thus for sufficiently small Ry, Ugr, C O.. O
The main result of this section will be

Proposition 4.4.14. For any Ry > R; defined above, the tensors B, and Q.,.,

vanish identically in Ug,.

We prove the proposition by induction, in view of Proposition 4.4.13. Therefore
it suffices to show that given any R, > R;, assuming that B!, and Q. vanish
identically in Upg,, then there exists a small r that depends only on Cjy,, A, (see
(4.27). This constant controls the fact that ¢ intersects ¥y transversally in ©. We
choose a small enough € so that O, N D N Xy C Ug, from above), and the radius Ry,
such that B/, and 9/, , also vanish in Ug,,,. In the following Cg, will denote any

constants depending on R, Ay, and A,. To close the induction, it is crucial that r

only depends on the above listed constants.
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Using the computations in Chapter 3, one recalls that in a domain where B/, and
Q! 1.q Vanish, |qg +igqp|?/ P’ = 2Z'. Of course, in the case where the charge vanishes,
=’ is identically 0, so (42" — 2M) is a constant and can be safely ignored in our
arguments. In the case where the charge does not vanish, we see that 2M — 4Z' =
2[—|qr +igp|*(y —iz) + M (y* + 2?)]/(y* + 2%). Recall that 2% < < M?— |qg +igp|*.

Consider a point on the boundary 0Ug,*, y = M R, there, so we have the very loose

bound
2(R3 +1) —n _ 2(R5 — Ry)
——=_ M >2M —4=| > ——=—M
7 | > TR
on OUR,. Using that R; > 1 by construction,
Ry —1
AM > [2M —4Z'| > =M .

Given the uniform control on the derivative of =/, there exists a small 7 that only

depends on Ay and Ry such that |2M —4Z'| € <P52£21 M,8M) inside B,; of a point on

the boundary of Ug,. Now, since F? = —(P')~*(4Z' — 2M)?, on the boundary of U,

4
MR

Ry —1

M*S
IR

> |F?| >

so we can also choose 7} in a manner only depending on Ay and Ry so that |F?|
is bounded, and bounded away from zero in B,, using the fact that JF 2 is smooth.
Therefore P’ is well-defined in B,; and so is y. We also have that the first four
derivatives of y are controlled by Cg,. So choosing 7} sufficiently small again, we

have

yE((y5§+MR1)/2,2MR2), VIGBT/Q .

We consider 77 fixed relative to a given Rs from now on.

By (4.27), we can also fix a d, > Cp} so that (—dy,d2) X (B, NYp) is diffeomor-

3Since U, is only defined as a subset of ¥y, we consider its boundary only in o N®. This will
be taken as a definition hereon.
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phic to U|8|<52(I>gt)(BT/2 N Xy) where ®" is the one-parameter (s) family of isometries
corresponding to the Killing vector field . We write 79 for the projection from
U|s|<52<1)§t)(BTé N ¥) to By, N %o induced by the above diffeomorphism.

We now write NV, for the connected component of [U,® (Ug,) U O,,] N M that
contains Ug,. By construction, we see that since ¢ is Killing and the symmetry
descends to all geometric quantities concerned, 4=’ # 2M, F? # 0, and B/, and Q' ,
are well-defined and vanishing in AMg,. Therefore our results from Section 4.4.2 and

from Chapter 3 can be applied.

Lemma 4.4.15. Consider a point xo on the boundary OUg,. There exists some

ro < 14 such that
{T1*(z), 7 € By, : y(x) < MRy} C Ujg<s,@ U,

Proof. Recall that (Vy)? = (y? — 2My + A + |qg + iqs|*)/(y* + %) > 0 if y > yg.
Therefore we can find 1§ < Cp, such that (Vy)* > Cg! in B,y. Therefore there
exists some 7, < 15 and a set B’ such that B,, C B’ C B,y and such that {z €
B’ : y(x) < MRy} is connected. Thus 79({z € B’ : y(z) < MR,}) C B,y N Xy is
a connected set containing {x € B’ N %y : y(r) < MRy}. By the diffeomorphism
above, y commutes with 7% (which is a realization of the Killing symmetry). So

m2({x € B': y(r) < MR,}) C Ug,. The claim follows. O

We now localize our attention to N’ := Ng, N 11" B,,. In N/ we have that
(Vy)? = 2U > 0. So computations in the second half of Section 4.4.2 can be used.
Note that U > ngl by construction, and that we can also estimate H > ngl by
observing that y — yg > MCEQ1 and yg > M.

We now offer a second Carleman estimate

Lemma 4.4.16. There is an € < ro sufficiently small and C. sufficiently large such
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that for all A > C. and any ¢ € C°(Beo)

|L2 + ||€7/\f€

Ale ¢ o[l < CAV2 e MNeOyg|| 2 + € lle ™V i(@) |2 (4.50)

where with y(xg) = Ra,

fo=In(y — Ry + e+ €'*N™) . (4.51)

Proof. We apply Proposition 4.3.3 with V =t, h = y — Ry +€ and e, = €!2N%. It is
clear that all the conditions are satisfied for e sufficiently small except that we need
to check h, is a good t-conditional family of pseudo-convex weights for some €;. By
our construction, it is clear that (4.18a) it satisfied by definition. For (4.18b), we use

the computations from Lemma 4.4.10

Vh Vahe = (Vy)? = 2U
vay — _la + Ula
VeyVlyV2y = —2U(V?y)sy = 2HU?

Vh -V h(VohVyhe — eV2h) = AU? — 2¢ HU?

which we can bound from below by € for sufficiently small ;.
It remains to check (4.18c). Since this is a point-wise condition, we decompose X
using the null tetrad:
X=Wm+Wm+YIl+Zl
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where W is complex and Y, Z are real. On the right hand side,

g(X, X)=2WW —2YZ
gt,X)=2Z+YU - WnP —WiP
=7 —-YU+2YU - 2R(W(P')

9(X,Vy)=Z-YU

Vixhe =2(-YZHU + WYqU —(WZ +WYqU — W(Z + yffzz UWW)
= %UWW —2YZHU — 2(W(Z + YU%) —2lW(Z + YU%)
Notice that % =P M%Aggpfﬁ — 1.
Vi .xhe = %WIZ —2YZHU — (Z - YU)4AR(CW) — %YU?R(CWP’)
So

1g(X, X) = Vixhe + € 2(|gt, X)|* + |Vxhe|?)

= 2u|W|* —2uY Z — %UWW +2YZHU +4(Z — YU)R(CW)
%YU%(CWP’) +2e 372 -YU)?
+46€(Z = YU)(YU = R(W(P)) + 4 (YU — R(W(P))?
> (21 — %UMWE +2(Z = YU)YHU — uY + 2R(W(P))
+2Y?*(HU? — U + —ij\éRj =U7)
%YU(?R((WP’) —YU)+2%(Z -YU)?

+4e 2 Z - YU)(YU - R(W(CP")) + 4e 2(YU — R(W(P))?
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Now set p = 3M RyU/(M?R5 + z?) and noting that H > 0,

pg(X, X) = Vixhe + € (|lg(t, X)I* + [Vxhe])

2MR2 2 2MR2 2v2
> 2Vl v 2y
Z w20 W S
-2 —1
+ ET(Z _YU2 ET(YU —R(WCP)?

for sufficiently small e. Noting that U is bounded from below by CEQI, this gives use

1g(X, X) = Vixhe + € 2(lg(t, X)|* + |Vxhe|?)

> Crl(Z2+Y? + W)

and thus (4.18c) holds for €; small enough. O

Using the Carleman estimate, we have that

Proposition 4.4.17. For any fived xo on OUR,, there ezists r5 < 1o, 13 depending

on Cr,, such that B.,, and Q.,., vanishes in B,,.

Proof. We apply Lemma 4.4.16 for the vector S defined as in the proof of Proposition

4.4.8, and we also defined the weight function n the same way. Write
S =81 —n(N™/e?)) = Si.
and again commute the Carleman estimate with S¢. The equation satisfied by &€ is

0,5 = An.(VS + S) + V'SV + SO 7

H(S) = t(11)S + 1(S)1le

Using the wave equation satisfied by S and the fact that B.,, V.B.,, and Q., , are

ab’ ab’ abc
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stationary under ¢, we have the following differential inequalities

0,8 < Cry (IS + [0S0

t(S)|eee < Cr,|Slex

Putting this into the Carleman estimate, it is clear that for A sufficiently large, it

suffices to deal with the error terms coming from 7j.. By construction, however, the

support of the error terms lies in {y > MRy} N {N" > €%}, the first contribution

arising from the fact that S vanishes when y < M R, and the second from the fact

that we are looking at the derivatives of a function which is constant near zero

the error terms have the pointwise bound
|VESVaile| + |SDgﬁ6| + ’S||a(1)ﬁe| < ORQ1{y>MR2}m{N102550}ﬂB610
Therefore arguing as in the proof of Proposition 4.4.8, we compare

inf e Me > sup e Me

B_100 {y>MR2}N{N*0>e50}NB 10

and the Carleman inequality implies

A ‘ ||1B€100‘S‘||L2 |goo < CRzéEH1{y>MR2}ﬁ{N’”OZ€5O}ﬁB€10 ||L2

and by taking A — oo we obtain that & must vanish identically in B,ioo.

To finish the proof of Proposition 4.4.14, we need to show that for some
Ug,+r is contained in the set where we have shown S and hence B), and Q/, .,

Consider the set
Uy, = Up, U (Vo {7 € Bryyo NS0 : y(x) < M(Ry+1)})
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where the constant C is chosen so that the closure

UfzeBanSo:yl@) < MR +1)} C | {v € By NS y(z) < M(Ry + 1)}
AUr, OUR,
where the closure is taken in ¥,. C exists as OUp, is compact for any given R, by
the asymptotic flatness assumption.

We claim that U, , C Ug,. The proof is exactly the same of that in Section 8.2
of [14]. We'll sketch the proof here. Suppose the claim is false at some point p. Since
UR,+r 18, by definition, connected to $y, we can choose a path in Ug,, such that it
contains points not in Uy, . Take one such smooth path, parametrize it to start from
$o, and let p’ be the first point not in Up, . So p' is necessarily in LE . Now p’ cannot

lie in URQ, since by definition all those points are interior points of Up,. So
P’ € Uouup, {7 € Bryyc N y(z) < M(Ry +7)} .

But we defined the closure in such a way that p" must lie in B,,/» N X, for some
boundary point zy € OUg,. Inside B,,/;, we have that Vy is a space-like smooth
vector field, and we can flow p’ along it in the negative direction. If r is chosen small
enough (say r < r3/1000), this operation generates (via a projection onto ¥y by 7%) a
smooth curve the lies entirely in B,, »MN¥, connecting p’ to some point p” in B,, 2N %y
satisfying y(p”) < M Rs. By construction, this p” must be in Ug,, so there must exist
another point p” on dUg, whose distance to p’ is small. For the fixed constant C'
defined above, we can further assume that r is small enough such that p’ will now
sit in B,,,c N ¥o from the point p”, contradicting the assumption that p' is the first

point not in Uy, .
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4.4.4 Tidying up

To complete the proof of the uniqueness theorem, we first use Proposition 4.4.14 to
show that B!, and Q!, , vanishes in the component of 3 that is connected to .
Suppose this component does not cover the entirety of ¥y N®. We argue now in the
same way as Section 3.4 to conclude that any point in ¥y 0% that does not lie in
the desired connected component of 3 cannot be reached from the interior by any
curve of finite Riemannian length, and we obtain a contradiction. Therefore F? # 0,

= # 2M, and Bl and Q/, , are vanishing in the entirety of £, N®. By stationarity,

the conditions hold in the entirety of ®, establishing Theorem 4.4.5.
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