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Abstract

The uniqueness of the Kerr-Newman family of black hole metrics as stationary asymp-

totically flat solutions to the Einstein equations coupled to a free Maxwell field is a

crucial ingredient in the study of final states of the universe in general relativity. If

one imposes the additional requirement that the space-time is axial-symmetric, then

said uniqueness was shown by the works of B. Carter, D.C. Robinson, G.L. Bunting,

and P.O. Mazur during the 1970s and 80s. In the real-analytic category, the condi-

tion of axial symmetry can be removed through S. Hawking’s Rigidity Theorem. The

necessary construction used in Hawking’s proof, however, breaks down in the smooth

category as it requires solving an ill-posed hyperbolic partial differential equation.

The uniqueness problem of Kerr-Newman metrics in the smooth category is con-

sidered here following the program initiated by A. Ionescu and S. Klainerman for

uniqueness of the Kerr metrics among solutions to the Einstein vacuum equations.

In this work, a space-time, tensorial characterization of the Kerr-Newman solutions

is obtained, generalizing an earlier work of M. Mars. The characterization tensors

are shown to obey hyperbolic partial differential equations. Using the general Carle-

man inequality of Ionescu and Klainerman, the uniqueness of Kerr-Newman metrics

is proven, conditional on a rigidity assumption on the bifurcate event horizon.
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Chapter 1

Introduction

The existence of black holes is a fundamental feature of general relativity.1 To wit,

the celebrated Schwarzschild solution was discovered mere months after Einstein

published his namesake equations describing celestial evolution. Yet the nature of

black holes has proven elusive since the very beginning of relativity theory. When

K. Schwarzschild wrote down the first non-trivial exact solution to Einstein’s equa-

tions in 1916, his goal was that of the gravitational field exterior to a stellar object

[35, 34]. It was not until J. Synge [41] and M.D. Kruskal [21] considered the “max-

imal extension” to the Schwarzschild metric that we began to properly interpret its

properties as a black hole. On the other hand, while many open questions still remain

in the study of black holes, the explosive growth of the field in the latter half of the

twentieth century elucidated features of these special solutions and directed research

toward the more pertinent problems.

The importance of black holes was underscored when R. Penrose demonstrated his

“singularity theorem”[29, 13]. Prior to that, singular black-hole solutions are some-

times dismissed as unphysical and only manifesting under symmetry assumptions;

this is largely because the known black-hole solutions at the time (Schwarzschild,

1The historical notes given herein are merely to illustrate and motivate the main problem under
discussion. Hence the interpretive history is opinionated, and the descriptive history incomplete;
the reader should not take the historical notes to be in any way authoritative.
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Reissner-Nordström [31, 27], and Kerr-Newman [20, 26]) are all symmetric exact

solutions. In view of Y. Choquet-Bruhat’s local-existence theorem for the Cauchy

problem in general relativity [11, 5], Penrose’s singularity theorem showed the exis-

tence of black holes to be “generic” (quite recently D. Christodoulou went further and

showed that dynamical formation of black holes is also generic [6]). The study of black

holes gained further prominence through investigations of the long-time-existence as-

pect of the Cauchy, or initial value, problem. Einstein’s equations are known to be

reducible to a system of quasilinear wave equations (it is in this formulation that

Choquet-Bruhat proved local existence), and hence some wave-like or dispersive phe-

nomena are expected2. Precisely this was shown by H. Bondi et al.[2] and R. Sachs

[33] via a mass-loss formula that described energy being carried away from a local

source through gravitational radiation. For dispersive or wave-type systems, it seems

reasonable to expect that a solution consists of two parts: a localized stationary part

where attractive nonlinearities (e.g. gravity) overcome the dispersive tendencies, and

a radiative part which “decays” over time (the archetypal example for this splitting

being the Korteweg-de Vries equation; see Chapter 4 in [42] and references therein).

Whether such a characterization (a property technically termed “scattering”) actu-

ally holds is the subject of active research, and considerations of the “stationary part”

brings us back to the subject of black holes.

As mentioned above, the explicit closed-form black-hole solutions are all highly

symmetrical. In fact, the Kerr-Newman family of solutions (which subsumes the

Schwarzschild and Reissner-Nordström metrics) have a time symmetry that qualifies

them as stationary (see Section 1.3 for definitions). Thus they are candidates for the

possible final state of evolution for a given space-time. The natural question to ask

then, is

Problem 1.0.1. Does the Kerr-Newman family constitute the only candidates for the

2The subject of gravitational waves was (and perhaps still is) a contentious one. The reader is
referred to the excellent book by D. Kennefick [19] for a more complete history.
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possible final states?

The present work is an effort to address the above problem. Written as such,

of course, the question is not well-posed mathematically. In the remainder of this

chapter, some technical definitions will be made and, in Section 1.4, a more precise

statement of the problem under consideration will be given.

1.1 The Einstein-Maxwell equations

First it is necessary to describe the physical system: what is a space-time, what sorts

of matter are considered, and what are the physical laws of evolution?

Definition 1.1.1. A space-time shall refer to a pair (M, gab) such that:

• M is a four-dimensional, paracompact, orientable, smooth manifold.

• gab is a smooth Lorentzian metric on M. In other words, gab is a smooth (0, 2)-

tensor field, is symmetric and non-degenerate, and has signature (−, +, +, +).

gab stands for the metric inverse. All index-raising and -lowering will be with

respect to gab or gab as appropriate.

• M is time-orientable relative to the metric gab (in other words, there exists a

continuous, globally non-vanishing vector field T0 such that gabT
a
0 T b

0 < 0).

The only allowed matter field is a Maxwell field which describes electro-magnetism.

Definition 1.1.2. A Maxwell field or Maxwell two-form shall refer to a real-valued,

smooth two-form Hab on M, such that Maxwell’s equations are satisfied:

∇[aHbc] = 0

∇aHba = 0
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where ∇a is the Levi-Civita connection for the metric gab, brackets [·] around indices

denote full anti-symmetrization, and Einstein’s convention of contracting repeated

indices is in force.

Definition 1.1.3. The triple (M, gab, Hab) is said to be a solution to the Einstein-

Maxwell, or electro-vac, system if Hab is a Maxwell field and Einstein’s equations are

satisfied:

Rab −
1

2
Rgab = Tab

where Rab is the Ricci curvature of the metric gab, R = gabRab is the scalar curvature,

and Tab = 2HacHb
c − 1

2
gabHcdH

cd is the rescaled stress-energy tensor for the Maxwell

field.

By construction, the stress-energy tensor of the Maxwell field is trace-free gabT
ab =

0. By taking the trace of Einstein’s equations, the scalar curvature vanishes. Thus a

solution to the Einstein-Maxwell system must have R = 0 and Rab = Tab.

1.2 Causal geometry

The Lorentzian metric gab imposes a structure on the tangent space TpM at any

point p ∈M. With a suitable choice of basis vectors, TpM can be identified with the

Minkowski space, whence it is possible to decompose TpM into the disjoint union of

tTpM∪ sTpM∪ nTpM, where elements of

tTpM := {va ∈ TpM|gabv
avb < 0} (1.1a)

are said to be time-like, elements of

sTpM := {va ∈ TpM|gabv
avb > 0} (1.1b)
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are said to be space-like, and elements of

nTpM := {va ∈ TpM|gabv
avb = 0} (1.1c)

are said to be light-like or null.

It is clear from the Minkowski-space picture that nTpM is a double-cone, and

that tTpM has two connected components. By the assumption that (M, gab) is time-

orientable, there exists a continuous choice

t±TpM := {va ∈ tTpM|± gabv
aT b

0 < 0} (1.2)

where t+TpM consists of the future-pointing time-like vectors, and t−TpM of the

past-pointing time-like vectors. Similarly nTpM \ {0} can also be decomposed into

n±TpM.

A C1 curve γ inM is said to be time-like (similarly space-like or null) if its tangent

vector at every point is time-like. The curve is said to be causal if its tangent vector

at every point is either time-like or null. Notice that for a given parametrization of

a causal C1 curve γ, its time orientation is fixed, and reversing the parametrization

gives a reversed time orientation.

Now, given two points p, q in M, p is said to be to the future of q, and written

p < q if there exists a future pointing causal C1 curve γ : [0, 1] →M with γ(0) = q

and γ(1) = p; the strict inequality p � q is taken when γ is strictly time-like. (For

properties of these causal relations, see Chapter 14 in [28].) Let A be a non-empty

subset of M, its future set is defined to be

I+(A) = {p ∈M|∃q ∈ A : q ≺ p} ,
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and its causal future set is

J+(A) = {p ∈M|∃q ∈ A : q 4 p} .

The past sets I− and J− can be defined analogously. The notation I(A, B) (similarly

J(A, B)) is used to mean I+(A) ∩ I−(B).

To rule out pathological examples, the following condition is often applied to

space-times

Definition 1.2.1. The space-time (M, gab) is said to be strongly causal if given

any point p ∈ M and a neighborhood U of p, it is possible to find a neighborhood

p ∈ V ⊂ U such that every causal curve with endpoints in V lie entirely in U .

A stronger condition is

Definition 1.2.2. An open subset Q ⊂ M is said to be globally hyperbolic if it is

strongly causal and that for any two points p, q ∈ Q, the set J(p, q) is compact.

The following definition is standard

Definition 1.2.3. A subset Σ of M is said to be a Cauchy hypersurface if every

inextendible time-like curve meets Σ exactly once.

It is well-known (see Lemma 14.29 in [28]) that a Cauchy hypersurface is a closed

achronal topological hypersurface and is met by every inextendible causal curve ex-

actly once. It is also well-known (see Corollary 14.39 in [28]) that a sufficient condition

for a space-time to be globally hyperbolic is for it to have a Cauchy hypersurface.

1.3 Stationary black hole solutions

The classical definition of a general black hole (see [13], Chapter 9 for an exam-

ple) depends on the regularity concepts of asymptotic predictability (and associated
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asymptotic simplicity). Since this work focuses only on stationary space-times, we

will forgo the customary definition of black holes from null infinities, and instead use

a definition more adapted to the work at hand [12] (see also [8]).

A space-time (M, gab) is said to be stationary asymptotically flat if it admits a one

parameter group of isometries Φt and contains what is called an asymptotic end M∞

on which the generators of Φt are uniformly time-like. M∞ is required to be an open

submanifold of M such that M∞ = ∪t∈RΦtΣ where Σ is a space-like hypersurface

diffeomorphic to R3 minus a ball. In the coördinates t×R3 thus induced, gab satisfies

certain decay conditions as one approaches infinity on R3 (which is automatically

uniform in t by the isometry assumption; the decay conditions will be made more

explicit in Chapters 3 and 4). The decay condition essentially states that the metric

approaches that of the Minkowski metric near infinity; the exact rate of decay is not

important in this section. For a more precise definition of stationary asymptotically

flat, see Definition 2.1 for “(k, α)-asymptotically stationary” in [8]. In the Einstein-

Maxwell case, we will also require that the Maxwell field Hab inherits the symmetry

(i.e. Φt∗Hab = Hab)
3, and that it satisfies suitable decay conditions.

Assuming the space-time is globally hyperbolic, we consider the following sets

B = M\ I−(M∞) and W = M\ I+(M∞). B and W are called the “black hole”

and “white hole” regions relative to the end M∞. We also write D = M\ (B ∪W)

for the domain of outer communication. The future and past event horizons H± are

defined to be the boundaries of B and W respectively. Since the space-time is globally

hyperbolic, H± are achronal sets (any two points cannot be connected by a time-like

curve) generated by null geodesic segments.

The interpretation of the above definitions is that the black/white hole regions

have interesting causal relations to the exterior region. Since the causal future J+(B)

of the black hole is disjoint from M∞, it is impossible to send a signal from inside

3Unlike in the Einstein-scalar-field case, this condition is not automatically satisfied. Some anal-
ysis to non-inheriting case was performed by Tod [44].
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the black hole to an observer outside the black hole. Similarly, it is impossible for an

observer inside the white hole to receive signals from outside the white hole. In other

words, a black hole region is one from which light cannot escape while the white hole

region is one into which light cannot penetrate.

The most well-known family of exact, closed-form, black-hole solutions is probably

the Kerr-Newman family. In Boyer-Lindquist coördinates, the Kerr-Newman line

element ds2 and the associated vector potential A for the Maxwell field are given as

ds2 = −
(

1− 2Mr − q2

r2 + a2 cos2 θ

)
dt2 − 2a(2Mr − q2)

r2 + a2 cos2 θ
sin2 θdφdt

+ sin2 θ

(
r2 + a2 +

a2(2Mr − q2)

r2 + a2 cos2 θ
sin2 θ

)
dφ2 (1.3)

+
ra + a2 cos2 θ

r2 + a2 − 2Mr + q2
dr2 + (r2 + a2 cos2 θ)dθ2 ,

A = − qr

r2 + a2 cos2 θ
dt +

qra sin2 θ

r2 + a2 cos2 θ
dφ ; (1.4)

it represents a charged, spinning black hole. If we set the charge parameter q = 0,

we reduce to the Kerr subfamily. If we set the angular momentum parameter a =

0, we reduce to the Reissner-Nordström family. And if both charge and angular

momentum vanishes, the black hole described is Schwarzschild. The free parameter

M represents the mass of the black hole, and it is generally assumed, based on

physical interpretations, that a2 + q2 ≤ M2; in the case of equality the black hole is

said to be “extremal”. If we set r = M +
√

M2 − a2 − q2, we see that the metric

becomes singular in these coördinates: this is a coördinate singularity (not a physical

singularity) representing the event horizon of the metric.

The properties of stationary black holes, especially those of their event horizons,

are well-studied. The topological uniqueness of black holes (see, for example, [7])

guarantees that for a stationary asymptotically flat black hole solution to the Einstein-

Maxwell equations, the domain D is simply connected, and each connected component
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of H± must have topology S2 × R (in this work we shall assume that there is only

one connected component of the horizon). Furthermore, from the definitions above,

it is clear that H± are invariant under the flow Φt. This immediately implies that

the associated Killing vector field must be tangent to the event horizon. If we further

assume that the only fixed points of Φt|H± live on H0 := H+ ∩ H−, then the Killing

vector field must be either null or space-like on H±. In the case the Killing vector

field is null on the horizon, Sudarsky and Wald [40] showed that the space-time must

be static, and hence Reissner-Nordström (see the next section). In this work we will

only consider the case when the Killing vector field is space-like somewhere on the

horizon. We also make the assumption that the future and past event horizons H±

are smooth null hypersurfaces that intersect transversely at H0. This assumption

is related to the non-degeneracy of the event horizon [4] which is associated to the

non-vanishing of surface gravity [45]. Physically this assumption may be justified by

the expectation that degenerate event horizons correspond to extremal black holes

(those for which the sum of the normalized angular momentum and charge equals

the mass), which are thought to be unphysical. Another property of stationary black

holes is Hawking’s area theorem [13], which tells us that the null mean curvature for

H± vanishes (for some consequences of this see Section 2.5). The precise formulation

of the assumptions mentioned here will be given in Chapter 4.

1.4 The problem of uniqueness

A large open problem in the classical study of black holes is the Final State Conjec-

ture, which contains as part of it Problem 1.0.1 mentioned above. The conjecture is

extremely open, in the sense that even a reasonable formulation of the conjecture is

unknown. Roughly speaking, one way to state the conjecture is

Conjecture 1.4.1. [Final State] For a generic asymptotically flat, globally hyper-
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bolic solution to the Einstein-Maxwell equation (possibly coupled with other fields),

we can find a foliation Σt such that the solution, when restricted to Σt, converges to

a superposition of multiple Kerr-Newman black holes as t →∞.

It is entirely unknown what “generic” means, or whether actually other fields are

allowed, or even how to pick a foliation (whether the foliation is by a time-function

or by asymptotically hyperbolic slices or some more exotic construction), or in what

sense can we take the convergence. As part of the effort to better understand the

conjecture, two natural, possibly easier, problems are asked. One is Problem 1.0.1

above; the other is the problem of nonlinear stability of black holes

Problem 1.4.2. Considering the Cauchy problem in general relativity. If one pre-

scribes an initial data set (see [45, 13] for a description of the Cauchy problem) that

is close to a Kerr-Newman black hole, will the evolution converge toward a possibly

different Kerr-Newman black hole?

As described in the opening paragraphs, the existence of gravitational waves seems

to lend a mechanism for radiative decay of solutions, and hence the expectation is

that the nonlinear stability problem will be answered in the affirmative sometime in

the future.

Let us now focus on the problem of uniqueness. From a physical perspective,

it is natural to expect that candidates for the final states are stationary solutions.

Unfortunately, unlike classical evolution equations, Einstein’s equation does not admit

a simple globally, canonically, defined time. One cannot simply prescribe

∂

∂t
System = 0

and solve an elliptic system. A more geometric prescription would be to “find a

solution to the Einstein-Maxwell system that admits a globally time-like Killing vector

field.” In view of known closed-form exact solutions, however, this prescription is
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overly restrictive, as in the Kerr-Newman family there exists the ergoregion, which

is contained in the physical region D, where the global Killing vector field becomes

space-like. (Observe that in the Boyer-Lindquist coördinates (1.3), the ergoregion is

defined by

M +
√

M2 − a2 cos2 θ − q2 > r > M +
√

M2 − a2 − q2

and pictorially is an oblate spheroidal region surrounding the event horizon.) Hence

we are forced to adopt the formulation for stationary asymptotically flat as described

in the previous section. That the symmetry is only time-like at a neighborhood of

infinity implies that reducing the equations by this symmetry will not lead to a elliptic

system, and hence such a näıve argument will not yield uniqueness of solutions.

Symmetry assumptions, however, can be useful in establishing uniqueness of so-

lutions. As mentioned before, the closed-form metrics of the Schwarzschild, Reissner-

Nordström, Kerr, and Kerr-Newman families are all highly symmetrical. In par-

ticular, the former two are static (possess a stationary Killing vector field that is

hypersurface-orthogonal; cf. Frobenius’ theorem) and spherically symmetric (admit

an action of SO(3) whose orbits are space-like); the latter two are stationary and

axially symmetric (admit an action of U(1) with space-like orbits, which commutes

with the stationary symmetry). Historically the first non-trivial uniqueness result

in general relativity is Birkhoff’s theorem (which was known since the 1920s [18]),

which states that any spherically symmetric solution to the Einstein vacuum equa-

tions must be the Schwarzschild solution. In particular, spherical symmetry is enough

to imply staticity. This result is later generalized to the electrovac system for the

Reissner-Nordström solutions. Birkhoff’s theorem is possible because the spherical

symmetry reduces Einstein’s equation to a problem in 1 + 1 dimensions, where the

Lorentzian geometry automatically imposes many constraints to reduce the problem

11



to essentially ordinary differential equations which can be directly integrated. The

next step forward came in the 1960s, when W. Israel established [16, 17] what is,

loosely speaking, the converse of Birkhoff’s theorem: a static, asymptotically flat

space-time that is regular on the event horizon must be spherically symmetric. Is-

rael’s theorem exploited the fact that a static space-time does not admit an ergoregion

(this roughly follows via a maximum principle on the Lorentzian norm of the static

Killing vector field: it vanishes on the black hole boundary and is harmonic where

it does not vanish, so it must be time-like in all of the exterior region), and thus

Einstein’s equation reduces to a degenerate elliptic system (degenerate near the hori-

zon where the Killing vector field becomes null) for which uniqueness can be shown.

B. Carter’s 1973 Les Houches report [4] finally sparked an attempt to similarly char-

acterize the Kerr and Kerr-Newman families: he showed that asymptotically flat, sta-

tionary, and axially-symmetric solutions to the vacuum (electrovac) equations form

a two-parameter (three-) family. Between D.C. Robinson [32], P.O. Mazur [24], and

G.L. Bunting [3], Carter’s program was completed and the Kerr and Kerr-Newman

families are established as essentially the unique solutions to the asymptotically flat,

stationary, axially-symmetric Einstein’s equations. As explicated by Bunting’s work,

the assumption of axial symmetry is essential in Carter’s program: while the sta-

tionary Killing vector field is no longer time-like everywhere in D, the span of the

stationary Killing vector field and the axial symmetry is Lorentzian. In other words,

there is a Riemannian structure on the space of orbits under the Abelian symmetry

group generated by the stationary isometry and the axial symmetry. Under this iden-

tification, the Einstein-Maxwell system is reduced to a harmonic map with singular

boundary conditions, for which uniqueness follows from elliptic theory.

At this point, the powerful results about the event horizons of stationary black

holes came into play. Hawking, starting from the area theorem, deduced that on the

event horizon of an arbitrary stationary black hole there must exists an axial symme-
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try [13]. If one is allowed to then assume that the space-time is real-analytic, one can

in principle “solve” the Killing equation to extend the axial symmetry to the entire

space-time. By appealing to the Carter-Robinson-Mazur-Bunting theorem, he is able

to conclude the famous No Hair Theorem, that any real-analytic nondegenerate sta-

tionary asymptotically flat solution to the Einstein-Maxwell system with a connected

event horizon must be a non-extremal Kerr-Newman black hole.

Hawking’s result, however, strongly depends on the analyticity of the space-time,

which is not completely a priori available. Indeed, in view of the work of H. Müller

zum Hagen [25] and P. Tod [43], we can expect that in the portion of D where the

stationary Killing vector field is strictly time-like, a solution to the Einstein-Maxwell

system is analytic in harmonic coördinates. The argument, which depends on elliptic

regularity, breaks down inside the ergoregion. In view of this, it is desirable to be

able to obtain a No Hair Theorem without the analyticity assumption. To address

this issue, A. Ionescu and S. Klainerman [14, 15] initiated a program to study the

uniqueness problem in the smooth category.

Problem 1.4.3. Consider a smooth solution of the Einstein-Maxwell equations. As-

sume the space-time is stationary asymptotically flat and globally hyperbolic, and that

the event horizon is connected and nondegenerate. Can we say that the space-time

must be isometric to a Kerr-Newman solution?

In the vacuum case, Ionescu and Klainerman gave a conditional answer in the

affirmative to the above problem. The principal argument is as follows: the bifurcate

event horizon is a characteristic hypersurface for the wave operator. While for the

exterior problem, the characteristic initial value problem is ill-posed, often one can

obtain uniqueness of solutions should they exist. The Einstein-Maxwell system can

be written as tensorial wave equations for the curvature tensor and the Maxwell two-

form. The hope then is that for a given initial data on the bifurcate event horizon, one

can use Carleman type estimates to show that there can be at most one solution with
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those data. Then if one can show that the initial data corresponding to Kerr-Newman

space-time is the only reasonable initial data (which one can heuristically hope for

because Hawking’s result on the bifurcate event horizon can still hold without using

the analyticity assumption). This last step, however, cannot be completed. Instead,

one can show that the results arising from the study of the event horizon allows

one to reduce the uniqueness of initial data to scalar conditions on the bifurcate

sphere, which while we hope can be removed, is currently necessarily prescribed as

an assumption. For the case when the Maxwell field is assumed to vanish identically,

Ionescu and Klainerman carried out the above program. In other words, Ionescu and

Klainerman’s result showed that, in the vacuum case, Problem 1.4.3 can be reduced

to asking whether the bifurcate sphere of a stationary asymptotically flat solution

must agree with the bifurcate sphere of a Kerr space-time.

In this work, we extend Ionescu and Klainerman’s result to cover the Einstein-

Maxwell case. In particular, we show the following

Theorem 1.4.4. Consider a smooth solution of the Einstein-Maxwell equation; as-

sume the solution is stationary asymptotically flat and globally hyperbolic, and that

the event horizon is connected and nondegenerate. Furthermore assume that the bi-

furcate sphere H0 of the solution satisfied some rigidity assumptions that is known to

be satisfied by a Kerr-Newman space-time, then the domain of outer communication

D of the solution is everywhere locally isometric to a Kerr-Newman space-time.

The precise conditions for the theorem and the rigidity assumption on the bifurcate

sphere will be laid out in Chapter 4.

1.5 Organization and overview of the present work

In Chapter 2, we review some well-known and some not-so-well-known facts about

Lorentzian geometry in four-dimensions in the presence of a stationary Killing vector
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field. In particular, we recall the notion of anti-self-dual two-forms and anti-self-dual

Weyl fields, upon which language the main hypotheses of the various theorems in this

work is stated. We also recall the tetrad formalism of Ionescu-Klainerman, which is

a computational aid similar to the Newman-Penrose formalism, but slightly better

adapted to the natural symmetry of swapping the two principal null vectors in a

space-time with Petrov type D. In the sequel, the anti-self-dual forms and the tetrad

formalism consist the main tools for calculating tensor (or invariant) and scalar (or

frame-dependent) expressions respectively.

In Chapter 3, we extend a result of Mars [22] to the electrovac case. Mars obtained

a tensorial characterization of the Kerr space-time. As a starting point, consider the

Minkowski space as a solution to the Einstein vacuum equations. By the vacuum

equations any solution is automatically Ricci flat. To characterize Minkowski space, it

therefore suffices to require the Weyl conformal tensor to vanish. Furthermore, such a

characterization is local: given a solution of the Einstein vacuum equations, supposing

that the Weyl conformal tensor vanishes on an open set U , then we can conclude that

U is locally isometric to a subset of Minkowski space. Similarly, to characterize Kerr

space-time, Mars showed that it suffices to ask for an algebraically-Weyl field (by

which we mean a (0, 4) tensor field that is trace-free in all pairs of indices, that is

antisymmetric in the first two and the last two, and is symmetric when considered

as a map from two-forms to two-forms) to vanish. The important feature is that

this algebraically-Weyl field can be constructed invariantly using the conformal Weyl

curvature and the stationary Killing vector field. Therefore one obtains a tensorial

characterization of Kerr space-times among all stationary solutions to the Einstein

vacuum equations. Furthermore, this characterization is essentially local [23]. In

the work of Ionescu-Klainerman, it is by showing that this characterization tensor

vanishes identically that they show the space-time is locally isometric to Kerr.

In this work, a tensorial characterization for Kerr-Newman space-time among
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stationary solutions to the Einstein-Maxwell equations is constructed. Because of the

inclusion of the matter field, it is necessary that the characterization uses two tensors:

an algebraically-Weyl one to control “gravitational waves” as in the Kerr case, and

a two-form to control the “electromagnetic waves” which is the new feature of this

characterization. The two tensors are shown to be invariantly constructed from the

Weyl curvature tensor, the Maxwell field of the solution, and the stationary Killing

vector field. And the characterization is again, essentially local (see Theorem 3.2.1).

In Chapter 4, we run through the same argument as in Ionescu-Klainerman [14].

First we show that the characterization tensors for the Kerr-Newman space-time obey

nonlinear wave equations through a long and tedious computation. Next we show that

the two tensors can be made to vanish on the bifurcate event horizon provided certain

scalar conditions on the bifurcate sphere is satisfied. An application of Ionescu and

Klainerman’s generalized Carleman inequality then shows that the two tensors must

vanish in the domain of outer communication. To apply the Carleman estimate,

however, one needs a set of conditional pseudo-convex weights. And for this it is

crucial that the characterization of Kerr-Newman space-time is essentially local: we

can use a bootstrapping procedure to control the pseudo-convex weights. Once a

neighborhood is shown to have vanishing characterization tensor, the local isometry

allows us to get a better control on the pseudo-convex weights than we assumed. The

standard method of continuity then allows us to conclude that the set on which the

characterization tensor vanishes is both open and closed in D, and hence is the entire

domain of outer communication.

Much of the material in Chapters 2 and 3 have been accepted for publication in

Annales Henri Poincaré. Most of the material in Chapter 2 are previously known,

though the presentation may be different; the main exception is Section 2.4 which

generalizes the Ionescu-Klainerman tetrad formalism to include Ricci terms. Theorem

3.5.1 is a recent addition, and has not appeared in print prior. Chapter 4 is entirely
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new, insofar as any generalization of a previously known result can be.

1.6 Notational conventions

Lastly, we define the following notational shorthand for Lorentzian “norms” of tensor

fields. For an arbitrary (j, k)-tensor Z
a1a2...aj

b1b2...bk
, we write

Z2 = ga1a′1
ga2a′2

· · · gaja′j
gb1b′1 · · · gbkb′k

Z
a1a2...aj

b1b2...bk
Z

a′1a′2...a′j
b′1b′2...b′k

for the inner-product of Z ···
··· with itself. Note that in the semi-Riemannian setting,

Z2 can take arbitrary sign.
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Chapter 2

Geometric background

In this chapter, some previously-known geometrical results are summarized, and the

results of some calculations (which will be used in the sequel) are recorded.

2.1 Anti-self-dual two forms and curvature decom-

position

As is well known, the Riemann curvature tensor Rabcd for an n-dimensional semi-

Riemannian manifold admits a decomposition

Rabcd = Wabcd +
1

n− 2
(g ? S)abcd +

R

2n(n− 1)
(g ? g)abcd , (2.1)

where Sab = Rab − 1
n
Rgab is the traceless Ricci tensor, and ? is the Kulkarni-Nomizu

product taking two (0, 2)-tensors to a (0, 4)-tensor

(h ? k)abcd := hackbd + hbdkac − hadkbc − hbckad . (2.2)

Notice that the Kulkarni-Nomizu product of two symmetric (0, 2)-tensors automati-

cally satisfies all algebraic properties of the Riemann curvature tensor.
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This decomposition is fundamentally related to the invariants of the curvature

tensor under (indefinite) orthogonal rotations in the tangent space; in four dimensions

it is also crucially related to self-dual and anti-self-dual two forms. These two facts

were first clarified by I.M. Singer and J.A. Thorpe in the Riemannian case [38], though

their results also can be adapted to the semi-Riemannian situation with minimal

changes 1. Here two of their main results are reproduced.

Theorem 2.1.1 (Singer-Thorpe ’69 A). Let (V, gab) be a scalar product space (gab is a

symmetric, non-degenerate, bilinear form on V ), and Λ2 the space of (antisymmetric)

two-vectors. Let Rabcd be a (0,4)-tensor corresponding (via gab) to a symmetric map

Λ2 → Λ2. Then there exists a decomposition

Rabcd = R
(1)
abcd + R

(2)
abcd + R

(3)
abcd + R

(4)
abcd ,

where the R
(i)
abcd are mutually orthogonal under the norm 〈R,S〉 = RabcdS

abcd where

index-raising is relative to gab. Furthermore, R
(1)
abcd is the only one not satisfying the

first Bianchi identity, R
(2)
abcd is the only one with non-zero scalar curvature (the double

trace R
(i)
abcdg

acgbd = 0 if i 6= 2), and R
(3)
abcd is the only one with non-vanishing traceless

Ricci part.

In particular, for a Riemann curvature tensor, R
(1)
abcd = 0, R

(2)
abcd = R

2n(n−1)
(g?g)abcd,

R
(3)
abcd = 1

n−2
(g ? S)abcd, and R

(4)
abcd = Wabcd.

In four-dimensional setting, the Hodge star operator ∗ also is a symmetric map

from Λ2 to itself. The decomposition in the above theorem satisfies the following,

Theorem 2.1.2 (Singer-Thorpe ’69 B). The linear maps given by R
(i)
abcd are charac-

terized by:

1The differences introduced by a semi-Riemannian setting can be solved with, for instance,
Lemma 3.40 in [28]; see the proof of Proposition 3.41 ibid (and compare to the proof in the Rieman-
nian case) for an illustration.
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• R
(1)
abcd is a multiple of the volume form (in other words, as a linear map from Λ2

to itself, it is a multiple of the Hodge star ∗);

• R
(2)
abcd is a multiple of identity map from Λ2 to itself. In coördinates this means

it is a multiple of (g ? g)abcd.

• R
(3)
abcd anti-commutes with ∗;

• R
(4)
abcd commutes with ∗, and its trace and the trace of its composition with ∗ both

vanishes.

2.1.1 Complex anti-self-dual two forms

On a four dimensional Lorentzian space-time (M, gab), the Hodge-star operator ∗ :

Λ2T ∗M → Λ2T ∗M is a linear transformation on the space of two-forms. In index

notation,

∗Xab =
1

2
εabcdX

cd ,

where εabcd is the volume form and index-raising is done relative to the metric g.

Since the metric signature is (−, +, +, +), the double dual is seen to be ∗∗ = − Id,

which introduces a complex structure on the space Λ2T ∗M. By complexifying and

extending the action of ∗ by linearity, Λ2T ∗M⊗R C can be split into the eigenspaces

Λ± of ∗ with eigenvalues ±i. An element of Λ2T ∗M⊗R C is said to be self-dual if it

is an eigenvector of ∗ with eigenvalue i, and anti-self-dual if it has eigenvalue −i. It

is easy to check that given a real-valued two-form Xab, the two-form

Xab :=
1

2
(Xab + i∗Xab) (2.3)

is anti-self-dual, while its complex conjugate X̄ab is self-dual.

In the sequel, elements of Λ2T ∗M shall be written with upper-case Roman letters,

and their corresponding anti-self-dual forms with upper-case calligraphic letters. The
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projection

Xab = Xab + X̄ab

is a natural consequence of (2.3).

Following are some product properties [22] of two-forms:

XacYb
c − ∗Xac

∗Yb
c =

1

2
gabXcdY

cd , (2.4a)

Xac
∗Xb

c =
1

4
gabXcd

∗Xcd , (2.4b)

XacYb
c + YacXb

c =
1

2
gabXcdYcd , (2.4c)

XacXb
c =

1

4
gabXcdX cd , (2.4d)

XacXb
c −XbcXa

c = 0 , (2.4e)

XabY
ab = XabYab , (2.4f)

XabȲab = 0 . (2.4g)

Now, the projection operator P± : Λ2T ∗M⊗R C → Λ± can be given in index

notation as

(P+X)ab = ĪabcdX
cd ,

(P−X)ab = IabcdX
cd ,

where Iabcd =
1

4
(gacgbd − gadgbc + iεabcd) .

With the complex tensor Iabcd, it is possible to define

(X⊗̃Y)abcd :=
1

2
XabYcd +

1

2
YabXcd −

1

3
IabcdXefYef , (2.5)

a symmetric bilinear product taking two anti-self-dual forms to a complex (0, 4)-

tensor. It is simple to verify that such a tensor automatically satisfies the algebraic
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symmetries of the Weyl conformal tensor: i) it is antisymmetric in its first two,

and last two, indices (X⊗̃Y)abcd = −(X⊗̃Y)bacd = −(X⊗̃Y)abdc ii) it is symmetric

swapping the first two and the last two sets of indices (X⊗̃Y)abcd = (X⊗̃Y)cdab iii)

it verifies the first Bianchi identity (X⊗̃Y)abcd + (X⊗̃Y)bcad + (X⊗̃Y)cabd = 0 and

iv) it is trace-free (X⊗̃Y)abcdg
ac = 0. For lack of a better name, this product will

be referred to as a symmetric spinor product, using the fact that in a representation

using spinor coördinates Xab = fABεA′B′ and Yab = hABεA′B′ (where fAB = fBA, and

similarly for hAB), the product can be written as

(X⊗̃Y)abcd ∝ f(ABhCD)εA′B′εC′D′ ,

where (·) denotes complete symmetrization of the indices. Notice that by definition

(P−(X⊗̃Y)P−)abcd = (X⊗̃Y)abcd .

2.1.2 Complex curvature tensor

In view of Theorem 2.1.2, the derivations in Section 2.1.1 naturally leads to the notion

of a complex curvature tensor. Consider X ∈ Λ−, the identity

−iR
(j)
abcdX

cd = R
(j)
abcd

∗X cd =
(−1)δ3j

2
εabcdR

(j)cdefXef = (−1)δ3j ∗(R(j)X )ab

gives that R
(j)
abcd maps Λ+ → Λ+ and Λ− → Λ− if j ∈ {1, 2, 4}; and Λ− → Λ+ and

vice versa if j = 3.

Hence the following decomposition of the Riemann curvature tensor relative to

the eigenspaces of ∗ is obtained:

Rabcd = (P−RP−)abcd + (P+RP+)abcd + (P−RP+)abcd + (P+RP−)abcd ,
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where the first two terms form R
(1)
abcd + R

(2)
abcd + R

(4)
abcd and the last two terms form

R
(3)
abcd. From the coördinate expressions of P± in terms of Iabcd, it is clear that the

first two terms are complex conjugates of each other, and similarly the last two terms.

A simple computation shows that, in terms of (2.1),

(P−RP−)abcd =
1

2
(Wabcd +

i

2
εabefW

ef
cd) +

R

12
Iabcd ,

(P+RP−)abcd =
1

4
[(g ? S)abcd + i(Sa

eεebcd + Sb
fεafcd)] .

In the sequel, Cabcd will be used to denote the complex Weyl tensor

Cabcd :=
1

2
(Wabcd +

i

2
εabefW

ef
cd) . (2.6)

Now, in the case of the Einstein-Maxwell equations, a solution must satisfy R = 0

and Sab = Rab = Tab. The tensor

Eabcd :=
1

4
[(g ? T )abcd + i(Ta

eεebcd + Tb
fεafcd)] (2.7)

together with Cabcd completely specifies the Riemann curvature tensor. Note also that

in terms of the complexified Maxwell field Hab = 1
2
(Hab + i∗Hab) the stress-energy

tensor can be written as

Tab = 4HacH̄b
c = 4Hb

cH̄ac . (2.8)

It is with this form most of the subsequent computations will be made.

23



2.2 Killing symmetry

Given (M, gab) a smooth, four-dimensional Lorentzian manifold, and assuming that

it admits a smooth Killing vector field ta, the Ernst two-form can be defined by

Fab = ∇atb −∇bta = 2∇atb , (2.9)

the second equality being a consequence of the Killing equation. As is well-known,

the Ernst two-form satisfies

∇cFab = 2∇c∇atb = 2Rdcabt
d . (2.10)

This directly implies a divergence-curl system (in other words, a Maxwell equation

with source terms) satisfied by the two-form

∇[cFab] = 0 ,

∇aFab = −2Rdbt
d .

Here one of the primary differences of the present work from [22] is seen: a space-

time satisfying the Einstein vacuum equations is Ricci-flat, and the above implies

that the Ernst two-form satisfies the sourceless Maxwell equations. In particular, for

the vacuum case,

∇[cFab] = 0 ,

and a calculation then verifies that

∇[c(Fa]bt
b) = 0 .
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Thus an Ernst potential σ is constructed for

∇aσ = Fabt
b

if the space-time is assumed to be simply connected.

In the non-vacuum case that this paper deals with, this construction cannot be

exactly carried through. However, the essence of the construction above is the follow-

ing fact disjoint from the semi-Riemannian structure of our setup: consider a smooth

manifold M, a smooth differential form X, and a smooth vector-field v. Consider the

Cartan relation

LvX = iv ◦ dX + d ◦ ivX

where Lv stands for the Lie derivative relative to the vector-field v, and iv is the

interior derivative. If X is a closed form, and v is a symmetry of X (i.e. LvX = 0),

then ivX must be closed also.

Applying to the Einstein-Maxwell equations, take X to be the anti-self-dual

Maxwell form

Hab :=
1

2
(Hab + i∗Hab) , (2.11)

which by Maxwell’s equations is closed. The vector-field v is naturally the Killing

field ta, and therefore the complex-valued one-form Habt
a is closed, and if M is taken

to be simply connected, also exact. In the sequel the complex-valued function Ξ,

which is defined by

∇bΞ = Habt
a , (2.12)

will be used. Notice that a priori Ξ is only defined up to the addition of a constant. If

the space-time is assumed to be also asymptotically flat, Ξ can be uniquely normalized

by a decay condition Ξ → 0 at spatial infinity (see Section 3.1 for more detail). The

function Ξ takes the place of the Ernst potential σ used in [22].
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2.3 Some computations regarding the main play-

ers

The Ernst two-form, the Maxwell two-form, and the Weyl curvature are the principal

players in many of the computations in subsequent chapters. Here some of their

properties, all related to the divergence-curl system they satisfy, are recorded.

Consider the decomposition of the Riemann curvature tensor

(RP−)abcd = Cabcd + Eabcd .

Because we act by P− on the right (and not on the left), the expression still observes

the second Bianchi identity

∇[e(C + E)ab]cd = 0 . (2.13)

Take a contraction between the indices e, c,

∇cCabcd +∇cEabcd =
1

2
(∇aTbd −∇bTad) .

Noting that

Eabcd =
1

2
(g ? T )ab

efIefcd) =
1

2
Īabef (g ? T )ef

cd = Ēcdab

by the second Singer-Thorpe theorem,

∇cEabcd = Īabef (∇eT f
d ) . (2.14)

Using that (I + Ī)abefX
ef = Xab, we obtain the contracted second Bianchi identity

∇cCabcd = Iabef∇eT f
d . (2.15)
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From the Maxwell equations, Hab is harmonic. Combining the two gives

0 = ∇c[∇cHab +∇aHbc +∇bHca]

2gHab = [∇c,∇a]Hcb − [∇c,∇b]Hca (2.16)

= Rc
ac

dHdb + Rc
ab

dHcd −Rc
bc

dHda −Rc
ba

dHcd

= TbdgacHcd − TadgbcHcd −RabcdHcd

= −WabcdHcd = −CabcdHcd . (2.17)

The derivative of Fab can be written down explicitly as

∇cFab = (Rdcab + iR∗
dcab)t

d

= 2Cdcabt
d + 2Edcabt

d . (2.18)

Taking the trace gives immediately

∇aFab = −Tabt
a .

On the other hand, notice that

∇a(Ξ̄Hab) = −H̄adtdHab = −1

4
Tbdt

d ,

which implies

∇a(Fab − 4Ξ̄Hab) = 0 . (2.19)

Since Fab− 4Ξ̄Hab is anti-self-dual, the fact it is divergence free implies that it is also

curl free, and hence it is a Maxwell field.

The following fact about Killing vector fields will also be needed. Consider the

product ∗Fab
∗Fcd = 1

4
εabefεcdghF

efF gh. The product of the Levi-Civita symbols can
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be expanded in terms of the metric:

εijklε
qrst = −24g

[q
i gr

jg
s
kg

t]
l .

By explicit computation using this expansion,

∗Fmxt
x∗Fnyt

y =
1

2
FabF

ab(tmtn − txt
xgmn) + gmnFxat

xF yaty − Fnxt
xFmyt

y

+ F bxtxtmFnb + F bxtxtnFmb + txt
xFmaFn

a .

Writing t2 = tat
a, from the fact ∇bt

2 = taFba the following, which is identical to

equation (13) from [22], is obtained:

∗Fmxt
x∗Fnyt

y =
1

2
FabF

ab(tmtn − gmnt
2) + gmn∇at

2∇at2 −∇mt2∇nt
2 (2.20)

+ tmFnb∇bt2 + tnFmb∇bt2 + t2FmaFn
a .

2.4 Tetrad formalism

The null tetrad formalism of Newman and Penrose will be used extensively in the

calculations below, albeit with slightly different notational conventions. In the fol-

lowing, a dictionary is given between the standard Newman-Penrose variables (see,

e.g. Chapter 7 in [39]) and the null-structure variables of Ionescu and Klainerman

[14] which is used in this work.

Following Ionescu and Klainerman [14], the space-time is assumed to contain a

natural choice of a null pair {l, l}. Recall that the complex valued vector field m is

said to be compatible with the null pair if

g(l,m) = g(l, m) = g(m, m) = 0 , g(m, m̄) = 1
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where m̄ is the complex conjugate of m. Given a null pair, for any point p ∈ M,

such a compatible vector field always exist on a sufficiently small neighborhood of p.

The set of vector fields {m, m̄, l, l} is said to form a null tetrad if, in addition, they

have positive orientation εabcdm
am̄blcld = i (m and m̄ can always be swapped by the

obvious transformation to satisfy this condition).

The scalar functions corresponding to the connection coefficients of of the null

tetrad are defined, with translation to the Newman-Penrose formalism, in Table 2.1.

The Γ-notation is defined by

Γαβγ = g(∇eγeβ, eα)

where for e1 = m, e2 = m̄, e3 = l, and e4 = l. It is clear that Γ(αβ)γ = 0, i.e. it is

antisymmetric in the first two indices. Two natural2 operations are then defined: the

under-bar (e.g. θ ↔ θ) corresponds to swapping the indices 3 ↔ 4 (e.g. Γ142 ↔ Γ132),

and complex conjugation (e.g. θ ↔ θ̄) corresponds to swapping the numeric indices

1 ↔ 2 (e.g. Γ142 ↔ Γ241). Note that θ, θ, ϑ, ϑ, ξ, ξ, η, η, ζ are complex-valued, while ω

and ω are real-valued; thus the connection-coefficients defined in Table 2.1, along with

their complex conjugates, define 20 out of the 24 rotation coefficients: the only ones

not given a “name” are Γ121, Γ122, Γ123, Γ124, among which the first two are related by

complex-conjugation, and the latter-two by under-bar.

2Buyers beware: the operations are only natural in so much as those geometric statements that
are agnostic to orientation of the frame vectors. Indeed, both the under-bar and complex conjugation
changes the sign of the Levi-Civita symbol; while for the complex conjugation it is of less consequence
(since the complex conjugate of −i is i, the sign difference is most naturally absorbed), for the
under-bar operation one needs to take care in application to ascertain that sign-changes due to,
say, the Hodge star operator is not present in the equation under consideration. In particular,
generally coördinate independent geometric statements (such as the relations to be developed in this
section) will be compatible with consistent application of the under-bar operations, while statements
dependent on a particular choice of foliation or frame will usually need to be evaluated on a case-
by-case basis.
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Γ-notation Newman-Penrose Ionescu-Klainerman
g(∇m̄l,m) Γ142 −ρ θ
g(∇m̄l, m) Γ132 µ̄ θ
g(∇ml,m) Γ141 −σ ϑ
g(∇ml, m) Γ131 λ̄ ϑ
g(∇ll,m) Γ144 −κ ξ
g(∇ll, m) Γ133 ν̄ ξ
g(∇ll,m) Γ143 −τ η
g(∇ll, m) Γ134 π̄ η
g(∇ll, l) Γ344 −2ε + Γ214 ω
g(∇ll, l) Γ433 2γ + Γ123 ω
g(∇ml, l) Γ341 −2β + Γ211 ζ = −ζ

Table 2.1: Dictionary of Ricci rotation coefficients vs. Newman-Penrose spin coeffi-
cients vs. Ionescu-Klainerman connection coefficients

The directional derivative operators are given by:

D = la∇a , D = la∇a , δ = ma∇a , δ̄ = m̄a∇a

(their respective symbols in Newman-Penrose notation are D, ∆, δ, δ̄).

The spinor components of the Riemann curvature tensor can be given in terms

of the following: let Wabcd be the Weyl curvature tensor, Sab be the traceless Ricci

tensor, and R be the scalar curvature,

Ψ2 = W (l,m, l, m) (2.21a)

Ψ̄−2 = Ψ2 = W (l, m, l, m) (2.21b)

Ψ1 = W (m, l, l, l) (2.21c)

Ψ̄−1 = Ψ1 = W (m, l, l, l) (2.21d)

Ψ0 = W (m̄, l, m, l) (2.21e)
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Φ11 = S(l, l) (2.21f)

Φ11 = S(l, l) (2.21g)

Φ01 = S(m, l) (2.21h)

Φ01 = S(m, l) (2.21i)

Φ00 = S(m, m) (2.21j)

Φ0 =
1

2
[S(l, l) + S(m, m̄)] (2.21k)

Notice that the quantities ΨA, A ∈ {−2,−1, 0, 1, 2} are automatically anti-self-dual:

replacing Wabcd ↔ ∗Wabcd gives ΨA(∗W ) = (−i)ΨA(W ), which follows from the or-

thogonality properties of the null tetrad and the orientation ε(m, m̄, l, l) = i. Using

this notation, the null structure equations, which are equivalent to the Newman-

Penrose equations, can be derived from the definition of the Riemann curvature ten-

sor:

Rαβµν = eµ(Γαβν)− eν(Γαβµ) + Γρ
βνΓαρµ − Γρ

βµΓαρν + (Γρ
µν − Γρ

νµ)Γαβρ

and that

Rαβµν = Wαβµν +
1

2
(Sαµgβν + Sβνgαµ − Sανgβµ − Sβµgαν) +

1

12
R(gαµgβν − gβµgαν) .

So from R1441 = W1441 = −Ψ2,

(D + 2Γ124)ϑ− (δ + Γ121)ξ = ξ(2ζ + η + η)− ϑ(ω + θ + θ̄)−Ψ2 , (2.22a)

and by taking under-bar of the whole expression, a similar expression for R1331 = −Ψ2

can be had (in the interest of space, the obvious changes of variables are omitted here).
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For R1442 = −1
2
S44 (and analogously R1332 = −1

2
S33),

Dθ − (δ̄ + Γ122)ξ = −θ2 − ωθ − ϑϑ̄ + ξ̄η + ξ(2ζ̄ + η̄)− 1

2
Φ11 . (2.22b)

From R1443 = −Ψ1 − 1
2
S14,

(D + Γ124)η − (D + Γ123)ξ = −2ωξ + θ(η − η) + ϑ(η̄ − η̄)−Ψ1 −
1

2
Φ01 . (2.22c)

From R1431 = 1
2
S11,

(D + 2Γ123)ϑ− (δ + Γ121)η = η2 + ξξ − θϑ + ϑ(ω − θ̄) +
1

2
Φ00 . (2.22d)

From R1432 = −Ψ0 + 1
12

R,

Dθ − (δ̄ + Γ122)η = ξξ̄ + ηη̄ − ϑϑ̄ + θ(ω − θ)−Ψ0 +
R

12
. (2.22e)

From R1421 = −Ψ1 + 1
2
S41,

(δ̄ + 2Γ122)ϑ− δθ = ζθ − ζ̄ϑ + η(θ − θ̄) + ξ(θ − θ̄)−Ψ1 +
1

2
Φ01 . (2.22f)

Using R3441 = −Ψ1 − 1
2
S41,

(D+Γ124)ζ−δω = ω(ζ +η)+ θ̄(η−ζ)+ϑ(η̄− ζ̄)−ξ(θ̄+ω)− ξ̄ϑ−Ψ1−
1

2
Φ01 . (2.22g)

From R3443 = Ψ0 + Ψ̄0 − S34 + R
12

,

Dω + Dω = ξ̄ξ + ξξ̄− η̄η− ηη̄ + ζ(η̄− η̄) + ζ̄(η− η)− (Ψ0 + Ψ̄0) + Φ0−
R

12
. (2.22h)
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And lastly from R3421 = Ψ0 − Ψ̄0,

(δ−Γ121)ζ̄−(δ̄+Γ122)ζ = (ϑ̄ϑ−ϑϑ̄)+(θθ̄−θ̄θ)+ω(θ−θ̄)−ω(θ−θ̄)−(Ψ0−Ψ̄0) . (2.22i)

The Maxwell equations can also be decomposed in this formalism: let

Υ0 =
1

2
(H(l, l) + H(m̄, m)) = Habl

alb (2.23a)

Υ1 = H(l,m) = Habl
amb (2.23b)

Ῡ−1 = Υ1 = H(m, l) = H̄abm
alb (2.23c)

be the spinor components of the Maxwell two-form Hab. Maxwell’s equations become

DΥ0 − (δ − Γ121)Υ−1 = ξ̄Υ1 − 2θ̄Υ0 − (ζ − η)Υ−1 (2.24a)

(D + Γ123)Υ1 − δΥ0 = (ω − θ̄)Υ1 + 2ηΥ0 − ϑΥ−1 (2.24b)

and their under-bar counterparts.

The Bianchi identities

∇[eRab]cd = 0

also need to be expressed in the formalism. Note that this implies

∇eWebcd = ∇[cSd]b −
1

12
gb[c∇d]R =: Jbcd ,

which gives

∇[eWab]cd =
1

6
εseabJ

srtεrtcd .
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Using the orientation condition ε(m, m̄, l, l) = i, the following can be demonstrated

(δ̄ + 2Γ122)Ψ2 − (D + Γ124)Ψ1 +
1

2
δΦ11 −

1

2
(D + Γ124)Φ01 (2.25a)

= −(2ζ̄ + η̄)Ψ2 + (4θ + ω)Ψ1 + 3ξΨ0

− (θ̄ +
1

2
ω)Φ01 − ϑΦ̄01 + (ζ +

1

2
η)Φ11 + ξΦ0 +

1

2
ξ̄Φ00

(D + 2Γ123)Ψ2 − (δ + Γ121)Ψ1 +
1

2
(D + 2Γ124)Φ00 −

1

2
(δ + Γ121)Φ01 (2.25b)

= (2ω − θ̄)Ψ2 + (ζ + 4η)Ψ1 + 3ϑΨ0

− 1

2
θ̄Φ00 − ϑΦ0 −

1

2
ϑΦ11 + ξΦ01 + (

1

2
ζ + η)Φ01

−(δ̄ + Γ122)Ψ1 −DΨ0 −
1

2
DΦ0 +

1

2
(δ − Γ121)Φ̄01 −

1

24
DR (2.25c)

= −ϑ̄Ψ2 + (2η̄ + ζ̄)Ψ1 + 3θΨ0 + 2ξΨ̄1

− 1

2
(ζ + η)Φ̄01 + θ̄Φ0 +

1

2
θ̄Φ11 +

1

2
ϑΦ̄00

− 1

2
ξ̄Φ01 −

1

2
η̄Φ01 −

1

2
ξΦ̄01

(D + Γ124)Ψ1 + δΨ̄0 +
1

2
(D + Γ123)Φ01 −

1

2
δΦ0 +

1

24
δR (2.25d)

= −2ϑΨ̄1 − 3ηΨ̄0 + (ω − 2θ̄)Ψ1 + ξ̄Ψ2

+
1

2
(ω − θ̄)Φ01 −

1

2
θ̄Φ01 −

1

2
ϑΦ̄01 −

1

2
ϑΦ̄01

+
1

2
η̄Φ00 + ηΦ0

In addition, taking the trace of the Bianchi identities gives

0 = ∇eWebc
b = Jbc

b
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and evaluates to

−δΦ0 − (δ̄ + 2Γ122)Φ00 + (D + Γ123)Φ01 + (D + Γ124)Φ01 +
1

4
δR (2.25e)

= (η̄ + η̄)Φ00 + 2(η + η)Φ0 + (ω − 2θ − θ̄)Φ01 + (ω − 2θ − θ̄)Φ01

− ϑΦ̄01 − ϑΦ̄01 + ξΦ11 + ξΦ11

DΦ0 + DΦ11 − (δ − Γ121)Φ̄01 − (δ̄ + Γ122)Φ01 +
1

4
DR (2.25f)

= −ϑ̄Φ00 − 2(θ̄ + θ)Φ0 + ξ̄Φ01 + (ζ̄ + 2η̄ + η̄)Φ01 − ϑΦ̄00

+ ξΦ̄01 + (ζ + 2η + η)Φ̄01 + (2ω − θ − θ̄)Φ11

A simple identification using Table 2.1 and the definitions for various spinor com-

ponents of the Riemann and traceless Ricci tensors shows that one can recover all

of the Bianchi identities in Newman-Penrose formalism from the above six equations

through the action of complex-conjugation and under-barring.

Lastly, to complete the formalism, the commutator relations are recorded here:

[D, D] = (η − η)δ̄ + (η̄ − η̄)δ − ωD + ωD (2.26a)

[D, δ] = −ϑδ̄ − (Γ124 + θ̄)δ + (η + ζ)D + ξD (2.26b)

[δ, δ̄] = Γ121δ̄ + Γ122δ + (θ̄ − θ)D + (θ̄ − θ)D (2.26c)

2.5 Geometry of bifurcate event horizon

As discussed in Section 1.3, the properties of the bifurcate event horizon is well

studied. Here we summarize some of the trivial geometric constructions related to

it. Throughout H± will denote a pair of smooth null hypersurfaces of (M, gab),

intersecting transversely in H0, a topological sphere. We will also require that H±

have vanishing null mean curvature as required by Hawking’s area theorem.

First recall the definition of the null mean curvature. Given H ⊂ M a smooth
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null hypersurface in a Lorentzian manifold, it is easily verified that at any point

p ∈ H there exists a unique direction L ∈ TpH ⊂ TpM such that g(L, v) = 0 for any

v ∈ TpH. By suitably normalizing L we can require it to be a smooth, future-pointing,

null geodesic vector field tangent to H; the geodesics tangent to L are said to be the

generators of the hypersurface H. We can define a horizontal structure hTH = TH/L

by identifying two elements of TpH when they differ by a factor of L. The metric on

M induces a Riemannian metric on hTH. The null Weingarten map associated to L

is defined to be bL : hTH → hTH given by

bL([X]) = [∇XL]

where X is a representative in TH for [X] ∈ hTH. It is easily checked that since

g(∇XL, L) = 1
2
∂Xg(L, L) = 0, ∇XL ∈ TH. A simple computation shows the null

Weingarten map is well defined for a fixed L, and that it is tensorial in L (namely

bfL = fbL). The null mean curvature for H relative to L is defined as the trace of bL.

Notice that while the null mean curvature depends on the choice of the vector field

L, its sign is invariant relative to the normalization of L. The null mean curvature

is related to the area in the following way: let S ⊂ H be a space-like hypersurface,

and write ωS for the induced volume form by the global metric g. Writing the one

parameter family of flows generated by L as Φt, we have that

∂t(Φt∗ωS) = (tr bL)ωS .

In other words, the null mean curvature measures the growth of the volume form

between successive spatial slices of H, which is why in the physics literature it is also

known as the null expansion for a null congruence. In particular, a null hypersurface

for which the null mean curvature vanishes is said to be non-expanding.
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2.5.1 Non-expanding null hypersurfaces and adapted tetrads

Now, consider a tetrad m, m̄, l, l adapted to the null hypersurface H by requiring l to

be the null generator of H and that ∇ll = 0. Then the requirement that l is geodesic

on H translates to the requirement that the null structure coefficients ξ = ω = 0 on

H. If we further require the condition that m, m̄ are “tangent” to H, we see that the

vanishing of null mean curvature is identical to requiring θ = 0. (By fixing m and l,

we also fix l by requiring it to be future pointing, orthogonal to m, and to have fixed

inner product against l.)

Let us now consider the consequences of vanishing θ, ω, ξ by looking at the null

structure equations.

• By (2.22b), which is in fact the Raychaudhuri equation in disguise, we have |ϑ|2+
1
2
Φ11 = 0. Suppose our space-time verifies the strong energy condition (which

is satisfied by the Einstein-Maxwell system), Φ11 ≥ 0. So we can conclude that

ϑ = 0 and Φ11 = 0. Now, since we are interested in the case of the Einstein-

Maxwell system, we have

Φ11 = S(l, l) = 4H(l,m)H̄(l, m̄) = 4|Υ1|2

and hence Υ1 = 0.

• By (2.22a), Ψ2 = 0.

• By (2.22f), Ψ1 = 1
2
Φ01. Notice that

Φ01 = S(l,m) = 4H(l,m)H̄(m, m̄) = −4Υ1Υ0

so Φ01 = 0 from calculations above. And hence Ψ1 = 0.

• By (2.22g), (D + Γ124)ζ = 0. This says that ζ is essentially constant along
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generators of the null hypersurface.

• By (2.24a), DΥ0 = 0, so Υ0 is constant along the generators of the null hyper-

surface.

• By (2.24b), (D − Γ124)Υ−1 = −(δ̄ + 2η̄)Υ0.

• Φ00 = −4H(l,m)H̄(m, l) = −4Υ1Ῡ−1 = 0.

• By (2.25c), −DΨ0− 1
2
DΦ0 = 0 on H. Now Φ0 = 4Υ0Ῡ0, so DΦ0 = 0, hence Ψ0

is constant along generators of the null hypersurface.

Now, let H± be two smooth null hypersurfaces that intersect transversely in H0.

Let l be a geodesic generator of H+, and l be a geodesic generator of H−, normalized

so that g(l, l)|H0 = −1. We can complete a null tetrad along H+ ∪ H− by requiring

m, m̄ tangent to H0. If we assume that both H+ and H− are non-expanding, the

above analysis can be performed on both H± (with appropriate changes for l ↔ l and

taking the underbar of all scalars defined in Section 2.4), and especially on H0. We

summarize the result here

• On H+, θ = ω = ξ = ϑ = 0, and Ψ2 = Ψ1 = Υ1 = 0.

• On H−, θ = ω = ξ = ϑ = 0, and Ψ−2 = Ψ−1 = Υ−1 = 0.

• On H+ ∪ H− Ψ0 and Υ0 are constant along the geodesic generators.

We also note that the Bianchi identities (2.25b, 2.25d) can be reduced to

(D − 2Γ124)Ψ−2 − (δ̄ − Γ122)Ψ−1 −
1

2
(δ̄ − Γ122)Φ̄01 (2.27a)

= (ζ̄ + 4η̄)Ψ−1 + 3ϑ̄Ψ0 − ϑ̄Φ0 + (
1

2
ζ̄ + η̄)Φ̄01

(D − Γ124)Ψ−1 + δ̄Ψ0 +
1

2
(D − Γ123)Φ̄01 −

1

2
δ̄Φ0 (2.27b)

= −3η̄Ψ0 + η̄Φ0
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2.5.2 Double null foliation near bifurcate sphere

The null tetrad chosen above still has considerable freedom in the gauge. In particular,

in the construction above we can always locally modify m and m̄ by factors of l

(essentially picking different representatives in TH of fixed elements in hTH), while

compensating in modifying the definition of l. Here we’ll present the double null

foliation, which allows us to have a coördinate system in a neighborhood of H0; the

restriction of this coördinate system on H± gives a way to fix the null tetrad up to a

complex rotation in m and m̄. The construction is standard, and we follow here the

presentation in [14].

The double null foliation is based on two optical functions u, u defined in a suffi-

ciently small neighborhood of H0 in M. Let l be defined on H+ and l be defined on

H− as before by parallel translation. We define the functions u, u by setting u = 0

on H+, and u = 0 on H−, and propagate u on H− by asking it to satisfy l(u) = −1

(recall that l is future pointing, so u increases as we go into the past) and similarly

propagate u on H+ by l(u) = 1. We get then a foliation of H− by the level sets Hu0,

and a foliation of H+ by the level sets H0u. Then we can define l on H− as the unique

future pointing null vector field that satisfies

g(l, l) = −1 , g(l, v) = 0 ∀v ∈ THu0 ;

similarly l can be defined on H+. Let H+u be the geodesic congruence generated by

l initiated from Hu0; and H−u the geodesic congruence generated by l initiated from

H0u. These two congruences are well-defined on a sufficiently small neighborhood O

of H0. Define the function u such that its level surfaces are H+u and u such that its

level surfaces are H−u. We also write Huu := H+u ∩ H−u. By definition u, u are both
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positive in O ∩D. By construction they are optical functions:

g(∇u,∇u) = g(∇u,∇u) = 0 . (2.28)

Define in O the function

Ω := g(∇u,∇u) , (2.29)

and observe that Ω|H+∪H− = 1. Define the vector fields L, L as

La = gab∇bu , La = gab∇bu (2.30)

so L agrees with l on H±, and L agrees with −l on H±. They satisfy

g(L, L) = g(L, L) = 0 , g(L, L) = Ω .

We will also write Oε for the neighborhood

Oε := {x ∈ O : |u|, |u| < ε} . (2.31)

By continuity, there exists a small ε0 such that Oε0 is compactly included in O, and

such that Ω > 1
2

on Oε0 .

A null frame can be easily completed on H± by the following definitions of m, m̄.

Choose m, m̄ as complex vectors on TH0 (we will not be able to define them on

the entirety of H0, as S2 is not parallelizable; but it suffices to consider an open

neighborhood of H0 at a time). We Lie transport m and m̄ along the null generators

by l and l; that is, we require [m, l] = 0 on H+ and [m, l] = 0 on H−. While Lie

transport, in general, will not preserve the inner products g(m, m) and g(m, m̄), on

H± we have that the null expansion θ (or θ) and null shear ϑ (or ϑ) vanish, which

guarantees that g(m, m) = 0 and g(m, m̄) = 1 when m, m̄ are constructed this way.
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Notice that by construction m(u) = 0 on H+ and ∇l(m(u)) = ∇m(l(u)) = 0 on H+,

which by the fact that m(u) = 0 on H0 means m(u) = 0 on H+. Arguing similarly on

H− gives us that m, m̄ are in THu0 and TH0u.

The particular advantage of this localized null frame on H+ and H− is that, by the

requirement [l,m] = 0, we have ∇lm = ∇ml, so the Ricci coefficients Γα14 = Γα41. In

particular, in view of the calculations in the previous section, this implies that on H+

Γ124 = 0, and on H− Γ123 = 0, further simplifying the calculation when our attention

is restricted to the surfaces H±.
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Chapter 3

A characterization of the

Kerr-Newman black holes

In this section, a local characterization of the Kerr-Newman metric is obtained. The

heuristic argument behind the characterization lies in the special aligned, Petrov type

D algebraic structure of the Kerr-Newman metric. We begin by giving a brief review

of the algebraic structure of Kerr-Newman metric, in particular the notion of principal

null directions.

First consider the case of a two-form Xab. It can be considered as an anti-

symmetric map on the space of vectors. Because the metric on the tangent space

is Minkowskian, we can ask for its eigenvectors. One immediately sees that if ra is

an eigenvector of Xab,

λrara = Xabr
bra = 0

the last equality by the antisymmetry. Hence either the eigenvalue λ = 0 or ra is a

null vector. In the latter case, ra is said to be a principal null vector of Xab. By the

classification theorem (a fact made immediately obvious in the spinor decomposition,

see e.g. [30]), any non-zero two-form must admit either one repeated principal null

direction, or two distinct principal null directions. In the former case the two-form
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is said to be null, and it satisfies X 2 = 0 where Xab is the anti-self-dual part of Xab.

Note that the eigenvalue equation can be re-written in the following form:

r[cXa]br
b = 0 .

Now consider the case of an algebraically Weyl field. It can be viewed as a trace-

free symmetric map from two-forms to two-forms. Therefore we can also consider

its eigenvectors (where the “vectors” now are two-forms). But recalling that the

two-forms also admit classification by principal null vectors, we observe that this

classification can be immediately passed upward to the level of Weyl fields. In par-

ticular, we say that a vector ra is a principal null vector of an algebraically Weyl field

Cabcd if

rbrcr[eCa]bc[drf ] = 0

in direct analogue to the spin-1/two-form case. The Petrov classification (see [45,

39, 30]) gives the possible multiplicities of principal null directions; again, this fact

is most obvious in the spinor language. We will not discuss all of the Petrov types

here, it suffices to say that up to multiplicity, there must be exactly four principal

null directions for a Weyl field (unless the field vanishes completely). An algebraically

Weyl field is said to be Petrov type D if it admits two distinct principal null directions

each with multiplicity 2.

The Kerr-Newman space-time features a triple alignment of principal null direc-

tions. On the Kerr-Newman space-time, the two two-forms, Ernst Fab and Maxwell

Hab, are naturally defined. Both of the two-forms are everywhere non-null and each

admits two distinct principal null directions. Furthermore, the principal null direc-

tions for the Ernst and Maxwell two-forms agree everywhere. In addition, the Weyl

curvature is everywhere Petrov type D, and the principal null directions for the Ernst

and Maxwell two-forms are also each repeated principal null directions for the Weyl
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curvature. This is the starting point of the characterization given in this chapter.

Historically much work has gone into the study of non-null solutions to the

Einstein-Maxwell equations. A comprehensive study of this subject goes under the

name of Rainich theory, whereby the Einstein-Maxwell equations are reduced to a

set of algebraic conditions and the Rainich differential equations. An interesting re-

cent work of J.J. Ferrando and J.A. Sáez [10] starts from Rainich theory and shows

that if one restricts to the class of non-null solutions to the Einstein-Maxwell system

which are Petrov type D and has alignment of the Weyl and Maxwell principal null

directions (stationarity is not assumed in their work), the solutions can be classified

completely base on purely algebraic conditions, and not differential ones. One can

consider the result given in this chapter a special case of the result of Ferrando and

Sáez, in which the metric becomes completely integrable. The chief difference, of

course, is that here a triple alignment is assumed, which is available only because we

focus on the stationary class.

Heuristically, we follow the approach of Mars [22] in the construction of our char-

acterization. The alignment of principal null vectors for two two-forms Xab, Yab can

be expressed as

Xab ∝ Yab

where the scalar of proportionality is a complex number. Now, one can observe

through direct computation that the symmetric spinor product of two two-forms

(X⊗̃Y)abcd is a Weyl field with principal null directions the union of the principal

null directions of Xab and Yab, thus if Xab is non-null, (X⊗̃X )abcd must be type D.

So we can write the alignment condition of the principal null directions of the Weyl

curvature as

Cabcd ∝ (X⊗̃X )abcd .

Just a proportionality is, however, not enough. We need to know the exact factor to
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characterize Kerr-Newman metric1.

The necessity of a scalar function that desribed the proportionality factors2 can be

interpreted as the following. It has been shown in Chapter 2 that the Ernst two-form

Fab satisfies a Maxwell equation with source which depends on the stress-energy tensor

of the Maxwell field Hab and its own vector potential ta. In otherwords, the Ernst

two-form behaves like an electro-magnetic wave minimally coupled to the background

geometry but also driven through interaction with the free Maxwell field. The Weyl

curvature, on the other hand, can be seen to satisfy a divergence-curl system (a spin-2

wave equation) by examining the second Bianchi identities. Thus the Weyl field is also

seen to be a spin-2 wave that is driven by the Maxwell field. By the complexification

procedure, the system is essentially invariant under a U(1) gauge action. So we have

the following heuristic analysis of degrees of freedom for the system:

1. The principal null directions of the three waves. This we fix to be aligned by

assumption.

2. The frequency of the three waves. This we fix to be identical by the assumption

that all three waves are fixed by the Killing action of ta.

3. The amplitude of the three waves. This should not require fixing, as one may

expect the ratio of the amplitudes should give us the charge/mass and angular-

momentum/mass ratios of the space-time, and so should be free. The exact

amplitude of the Ernst two form and the amplitude of the Maxwell form are, of

1Strictly speaking, this statement is false. As Mars indicated in [23], just the proportionality
expression suffices, with assumption of stationary asymptotic flatness, for showing a local isometry
from a given solution of the Einstein vacuum equations to the Kerr metric. That the proportionality
factor is necessary in this work is due to more subtle reasons, the two main ones being that (1)
we require a purely local characterization of the Kerr-Newman metric whereas the result in [23]
requires non-local information from spatial infinity; and (2) it is impossible to work analytically
with an algebraic alignment condition without the proportionality factor. Both of these reasons
are motivated by our analytic approach to the conditional uniqueness theorem for Kerr-Newman
metrics; see Chapter 4. It will be an interesting further project, separate from the goals of the
current work, to see if the characterization derived herein admits a generalization à la Mars [23].

2Beyond this heuristic justification, see also Remark 3.3.8 below for another reason why the
proportionality factors are useful.
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course, related by the Komar mass formulae to the asymptotic mass and charge

of the stationary space-time.

4. The phase difference of the three waves.

Hence to uniquely describe Kerr-Newman space-time, we heuristically expect to need

to know certain renormalizable (see Theorem 3.5.1) factors of proportionality that

describes, essentially, the phase difference between the three waves (see Theorem

3.2.1 for precise description). Once all these degrees of freedom are fixed, we can, in

principle, directly integrate the Einstein equations and show that the metric must be

Kerr-Newman.

The method employed by M. Mars and the present chapter bears much similarity

to the work of R. Debever, N. Kamran, and R.G. McLenaghan [9]. In that work,

the authors assumed (i) the space-time is of Petrov type D, (ii) the principal null

directions of the Maxwell tensor align (nonsingularly) with that of the Weyl tensor,

(iii) a technical hypothesis to allow the use of the generalized Goldberg-Sachs theorem

(see Chapter 7 in [39] for example and references), and integrated the Newman-

Penrose variables to arrive at explicit local forms of the metric in terms of several free

constants and several unknown functions. In view of the work of Debever et al., the

assumptions taken in this chapter merely guarantees that their hypotheses (i) and

(ii) hold, and that (iii) becomes ancillary to a stronger condition derived herein that

circumvents the Goldberg-Sachs theorem as well as reduces the amount of freedom

in the local form of the metric.

We should also mention the work of D. Bini et al. [1] on a different generalization

of the result of Mars, in which they keep the same definition of the Mars-Simon

tensor, while modifying the definition of the Simon three-tensor [36, 37] with a source

term that corresponds to the stress-energy tensor associated to the electromagnetic

field. They were then able to show that the vanishing of the modified Simon tensor

implies also the alignment of principal null directions. In the present work, we absorb
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the source term into the Mars-Simon tensor itself using only space-time quantities

by sacrificing a need for an auxiliary two-form, thus we are able to argue in much of

the same way as Mars [22] an explicit computation for the metric expressed in local

coördinates, thereby giving a characterization of the Kerr-Newman space-time.

3.1 The basic assumptions on the space-time

Take a space-time (M, gab) and a Maxwell two-form Hab on M such that they solve

the Einstein-Maxwell equations (see Section 1.1 for definitions). Assume the solution

satisfies the following assumptions

(A1) M is simply-connected.

(A2) (M, gab) admits a non-trivial smooth Killing vector field ta, and the Maxwell

field Hab inherits the Killing symmetry, i.e. its Lie derivative LtHab = 0.

In the sequel a local and a global3 version of the result will be stated. For the local

theorem, it is necessary to also assume

(L) the Killing vector field ta is time-like somewhere on the space-time (M, gab),

and Hab is non-null on M. (In other words HabHab 6= 0 everywhere on M.)

And for the global result, it is necessary to assume

(G) that (M, gab) contains a stationary asymptotically flat end M∞ where ta tends

to a time translation at infinity, with the Komar mass M of ta non-zero in M∞.

In addition the total charge q =
√

q2
E + q2

B of the Maxwell field, where qE and

qB denote the electric and magnetic charges, is non-zero in M∞.

3The world “global” here is used to mean “non-local”. More precisely, in the theorems proven
below, we will not be able to obtain a global isometry from a given stationary, algebraically aligned
solution (M, gab,Hab) to the Einstein-Maxwell system to the Kerr-Newman space-time. Rather, the
word “global” here means that we extract global (or non-local) information from asymptotic flatness
to relax certain assumptions. The end result is still a local isometry.
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Remark 3.1.1. Here the definition of stationary asymptotically flat end is quickly

recalled: M∞ is an open submanifold of M diffeomorphic to (t0, t1)×(R3\B̄(R)) with

the metric stationary in the t variable, ∂tgab = 0, and satisfying the decay condition

|gab − ηab|+ |r∂gab| ≤ Cr−1

for some constant C; r is the radial coördinate on R3 and η is the Minkowski metric.

In addition, a decay condition for the Maxwell field is required:

|Hab|+ |r∂Hab| ≤ C ′r−2

for some constant C ′.

Observe that under assumption (G), by the asymptotic flatness, the complex scalar

Ξ defined in Section 2.2 has a unique limit at spatial infinity. So a natural choice of

normalization is to set Ξ → 0 as r →∞.

3.2 The tensor characterization of Kerr-Newman

space-time; statement of the main theorems

We first state the main result of this chapter, which establishes a purely local char-

acterization of the Kerr-Newman metric. This formulation is comparable to that

of Theorem 1 in [23]. The conditions given below on the constants C2 and C4 are

analogous to the conditions for the constants l and c in the aforementioned theorem.

Theorem 3.2.1 (Main Local Theorem). Let (M, gab, Hab) solve the Einstein-Maxwell

system. Assuming (A1), (A2) and (L), and assuming that there exists a complex

scalar P , a normalization for Ξ, and a nonzero complex constant C1 such that

1. P−4 = −C2
1HabHab
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2. Fab = 4Ξ̄Hab

3. Cabcd = 3P (F⊗̃H)abcd

then we can conclude

1. there exists a complex constant C2 such that P−1 − 2Ξ = C2;

2. there exists a real constant C4 such that tat
a + 4|Ξ|2 = C4.

If C2 further satisfies that C1C̄2 is real, and that C4 is such that |C2|2−C4 = 1, then

we also have

3. A = |C1|2PP̄ (=C1∇P )2 +(=C1P )2 is a non-negative real constant on the man-

ifold4,

4. and (M, gab) is locally isometric to a Kerr-Newman space-time of total charge

|C1|, angular momentum
√

AC1C̄2, and mass C1C̄2.

The local theorem yields, via a simple argument, the following characterization

of the Kerr-Newman metric among stationary asymptotically flat solutions to the

Einstein-Maxwell system.

Corollary 3.2.2 (Main Global Result). Let (M, gab, Hab) solve the Einstein-Maxwell

system. We assume (A1), (A2) and (G), and let qE, qB, and M be the electric

charge, magnetic charge, and Komar mass of the space-time at one asymptotic end.

We choose the normalization for Ξ such that it vanishes at spatial infinity. If we

assume there exists a complex function P defined wherever H2 6= 0 such that

1. P−4 = −(qE + iqB)2HabHab when H2 6= 0

2. Fab = (4Ξ̄− 2M
qE+iqB

)Hab everywhere

4= will be used to denote the imaginary part of an expression. Notice that A is well-defined even
though C1 can be replaced by −C1. One should observe the freedom to replace C1 by −C1 also
manifests in the remainder of this chapter; it shall not be further remarked upon.
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3. Cabcd = 3P (F⊗̃H)abcd when P is defined

then we can conclude that

1. H2 is non-vanishing globally,

2. A = (q2
E + q2

B)PP̄ (=(qE + iqB)∇P )2 + (=(qE + iqB)P )2 is a non-negative real

constant on the manifold,

3. and (M, gab) is everywhere locally isometric to a Kerr-Newman space-time of

total charge q =
√

q2
E + q2

B, angular momentum
√

AM , and mass M .

Remark 3.2.3. If one explicitly computes the relevant scalars for the Kerr-Newman

metric in the Boyer-Lindquist coördinates (1.3) and (1.4), one sees that by taking

Hab = (dA)ab,

H2 = − q2

(r + ia cos θ)4

and

P =
r + ia cos θ

q
.

The Kerr-Newman metric is inherently Petrov type D with the triple alignment dis-

cussed in the beginning of this chapter. The Weyl and Maxwell scalars obtained from

the null tetrad decomposition described later in (3.3) can also be calculated

Υ0 =
q

2(r + ia cos θ)2
, Ψ0 = − q2 −Mr + iaM cos θ

(r − i cos θ)(r + i cos θ)3
.

The Υ0 component of the Ernst two form can also be written down as

Υ
(F)
0 =

q2 −Mr + iaM cos θ

(r − ia cos θ)(r + ia cos θ)2
.

For ease of notation, we write the complex scalar P , the complex anti-self-dual

50



form Bab, and the complex anti-self-dual Weyl field Qabcd for the following expressions

P 4 := − 1

C2
1HabHab

(3.1a)

Bab := Fab + (2C̄3 − 4Ξ̄)Hab (3.1b)

Qabcd := Cabcd − 3P (F⊗̃H)abcd (3.1c)

By an abuse of language, in the sequel, the statement “Bab = 0” will be understood to

mean the alignment condition (2) in Theorem 3.2.1 when we work under assumption

(L), or the alignment condition (2) in Corollary 3.2.2 when we work under assumption

(G), with suitably defined constants and normalizations. Similarly, the statement

“Qabcd = 0” will be taken to mean the existence of a suitable function P such that

the appropriate alignment condition (3) is satisfied under suitable conditions.

3.3 Proof of the main local theorem

Throughout this section we assume the statements (A1), (A2) and (L). The arguments

in this section, except for Lemma 3.3.1 and Proposition 3.3.2, closely mirror the

arguments given in [22], with several technical changes to allow the application to

electrovac space-times. Using the precise statement of Theorem 3.2.1, C3 should

be taken to be 0 in this section. We keep the notation C3 to make explicit the

applicability of the computations in the global case.

We start first with some consequences of assumption (L)

Lemma 3.3.1. If Bab vanishes identically on M, then we have that

1. FabFab only vanishes on sets of co-dimension ≥ 1,

2. FabFab = 0 =⇒ Fab = 0,

3. The Killing vector field ta is non-null on a dense subset of M.
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Proof. Squaring the alignment condition implied by the vanishing of Bab gives

F2 = (4Ξ̄− 2C̄3)
2H2 .

By assumption (L), if the left-hand side vanishes, then 4Ξ− 2C3 = 0, and using the

alignment condition again, we have Fab = 0. This proves claim (2).

Suppose Fab vanishes on some small open set δ, then necessarily ∇atb = 0 on

δ. Furthermore, we have that Ξ must be locally constant as shown above, and thus

∇aΞ = Hbat
b = 0. But

∇aΞ∇aΞ = HbaHcatct
b =

1

4
HabHabtctc = 0

and since the Maxwell field is non-null, we have that ta must be a parallel null vector

in δ. If ta is not the zero vector, however, we must have ta being an eigenvector, and

hence a principal null direction, of Hab, with eigenvalue zero: this contradicts the fact

that Hab is non-null. If ta = 0 on a small neighborhood δ, however, ta must vanish

everywhere on M since it is Killing, contradicting assumption (A2). This proves

assertion (1).

Lastly, assume that t2 = 0 on some small open set δ, which implies ∇at
2 = 0 and

2gt
2 = 0 on the neighborhood. Using (2.20), we deduce

∗Fmxt
x∗Fnyt

y =
1

2
F 2tmtn .

Taking the trace in m, n, we have

∗Fmx
∗Fmytyt

x = 0 .
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Using the fact that

FmxF
mytxty = ∇mt2∇mt2 = 0 , FacF̄b

c =
1

4
(FacFb

c + ∗Fac
∗Fb

c)

we have

FacF̄b
ctatb = 0 .

Now, since Bab = 0, this implies that

|2C3 − 4Ξ|2Tabt
atb = 0

on the open set δ. If the first factor is identically zero in an open subset δ′ ⊂ δ,

then Ξ is locally constant and arguing the same way as before we get a contradiction.

Therefore we can assume, without loss of generality, that Tabt
atb = 0 on our open set

δ. Now consider the identity

0 = 2gt
2 = ∇b(taFba) =

1

2
F baFba − 2Rabt

atb .

The last term vanishes by the assumption, and implies that F baFba = 0; thus ∗Fmxt
x =

0. Therefore

∇at
2 = tbFab = 2tbFab

in δ, and hence

0 = 2gt
2 = FabFab − 2Rabt

atb

and so FabFab = 0 identically on δ, which we have just shown is impossible. Assertion

(3) then follows.

We can then prove claim (1) in Theorem 3.2.1:

Proposition 3.3.2. If Bab and Qabcd both vanish on M, then P−1 − 2Ξ is constant.
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Proof. We start by calculating Hab∇cBab. Using (2.18),

Hab∇cFab = 2[Qdcab + 3P (F⊗̃H)dcab]t
dHab

+
1

2
(TadHa

c + TbcHd
b − TacHa

d − TbdHc
b)td

+ i(Td
e∗Hec + Tc

f ∗Hdf )t
d

= 2[Qdcab + 3P (F⊗̃H)dcab]t
dHab + 2(TadHa

c + TbcHd
b)td

= 2QdcabHabtd + P (3FdcHabHab +HdcFabHab)td

+ 8(HafH̄d
fHa

c +HbfH̄c
fHd

b)td

= 2QdcabHabtd + P (3[C−1
1 Bdc − (2C̄3 − 4Ξ̄)Hdc]HabHab

+Hdc[C
−1
1 Bab − (2C̄3 − 4Ξ̄)Hab]Hab)td + 4HabHabH̄dct

d

where we used (2.4d) and (3.1b) in the last equality. Using (3.1a), we simplify to

Hab∇cFab = 2QdcabHabtd − 3

C3
1P

3
Bdct

d +
4

C2
1P

3
(2C̄3 − 4Ξ̄)Hdct

d

+ C−1
1 PHdcBabHabtd − 4

C2
1P

4
H̄dct

d

Applying the condition Qabcd = 0 and Bab = 0 and (2.12), we have

Hab∇cFab =
4

C2
1P

3
(2C̄3 − 4Ξ̄)∇cΞ−

4

C2
1P

4
∇cΞ̄

On the other hand, we can calculate

Hab∇c

[
(2C̄3 − 4Ξ̄)Hab

]
= −4HabHab∇cΞ̄ +

1

2
(2C̄3 − 4Ξ̄)∇c(HabHab)

So putting them altogether we have

0 = Hab∇cBab =
4

C1P 3
(C̄3 − 2Ξ̄)(2∇cΞ−∇c

1

P
)
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By the arguments used in the proof of Lemma 3.3.1, Ξ is not locally constant and so

C3 6= 2Ξ densely. The above expression (and continuity) then shows that 2Ξ − 1
P

is

constant.

In what follows I’ll write C2 = P−1 − 2Ξ + C3.

Remark 3.3.3. In the global case (where we assume (G) instead of (L)), the decay

condition given by asymptotic flatness shows that 2Ξ and 1/P both vanish at spatial

infinity, and so C2 = C3 = M/(qE − iqB) everywhere.

The next proposition demonstrates assertion (2) in Theorem 3.2.1.

Proposition 3.3.4. Assuming the vanishing of Bab and Qabcd, we have the following

identities

t2 = −
∣∣∣∣ 1P − C2

∣∣∣∣2 + C4 (3.2a)

(∇P )2 = − t2

C2
1

(3.2b)

C12gP = − 2

C1C̄1PP̄

(
C̄1C2 − (|C2|2 − C4)C̄1P̄

)
(3.2c)

where C4 is a real-valued constant.

Proof. We can calculate

∇at
2 = 2tb∇atb = −Fbat

b = −2<[Fbat
b]

The vanishing of Bab and Proposition 3.3.2 together imply

∇at
2 = −4<[(2Ξ̄− C̄3)Hbat

b] = −2<[(
1

P̄
− C̄2)∇a

1

P
] = −∇a

∣∣∣∣ 1P − C2

∣∣∣∣2

The first claim follows as M is simply connected. Next, from Proposition 3.3.2 we
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get

∇aP = ∇a
1

2Ξ + C2 − C3

= − 2∇aΞ

(2Ξ + C2 − C3)2
= −2P 2Hbat

b

So

∇aP∇aP = 4P 4Hbat
bHcatc = P 4H2t2 = − t2

C2
1

where we used (2.4d) and the definition for P . We can also calculate directly the

D’Alembertian

2gP = −2∇a(P 2Hbat
b)

= −2Hba(2P∇aPtb +
1

2
P 2F ab)

= 2Hba(4P
3Hcatct

b +
1

2
P 2F ba)

= 2P 3H2t2 + 2P 2(
1

P̄
− C̄2)H2

= 2P 2H2

[
P

(
−
∣∣∣∣ 1P − C2

∣∣∣∣2 + C4

)
+

1

P̄
− C̄2

]

= 2P 2H2

[(
1

P̄
− C̄2

)(
1− P

(
1

P
− C2

))
+ C4P

]
=

2

C2
1P

(
C2(

1

P̄
− C̄2) + C4

)

from which the third identity follows by simple algebraic manipulations.

Remark 3.3.5. If we further impose the condition that C1C̄2 is real, then the imag-

inary part of the third identity becomes

=(2gC1P ) =
2(|C2|2 − C4)

|C1P |2
=(C1P )

which will be useful later. In the global case, we can again match the data at spatial

infinity to see that C4 = |C2|2 − 1 = M2/q2 − 1 (the condition relating C2 and C4 in
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Theorem 3.2.1 is directly satisfied); the third identity then reads:

(qE + iqB)2gP = − 2

q2PP̄

(
M − (qE − iqB)P̄

)
An immediate consequence of the above proposition is that (∇C1P )2 is real. Writ-

ing the complex quantity C1P = y + iz, where y and z are real-valued, we see that

this implies

∇ay∇az = 0

Furthermore, by Lemma 3.3.1, we have that, with the possible exception on sets of

co-dimension ≥ 1, t2 6= 0. This leads to the useful observation that, with the possible

exception on those points, (∇y)2 and (∇z)2 cannot simultaneously vanish, and in

particular ∇ay and ∇az are not simultaneously null, and thus rule out the case where

the two are aligned. We summarize in the following

Corollary 3.3.6. Letting C1P = y + iz, we know that on any open set

1. P is not locally constant

2. ∇ay and ∇az are mutually orthogonal

3. ∇ay and ∇az cannot be both null

4. ∇ay and ∇az cannot be parallel

Replacing C1P by y + iz, and imposing the condition C1C̄2 is real, we can also

rewrite

t2 = −C1C̄1 − 2C1C̄2y

y2 + z2
− |C2|2 + C4 .

Since Hab is an anti-self-dual two form with non-vanishing norm, it has two dis-

tinct principal null directions, which we denote by la and la, with the normalization

gabl
alb = −1. The alignment ofHab with Fab (via vanishing of Bab) allows the following
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expressions

Hab =
1

2C1P 2
(lalb − lalb + iεabcdl

cld)

Fab =
1
P̄
− C̄2

C1P 2
(lalb − lalb + iεabcdl

cld)

By the assumption Qabcd = 0, the principal null directions of Hab are repeated null

directions of the anti-self-dual Weyl tensor, and thus the space-time is algebraically

special (Type D). On a local neighborhood, we can take m, m̄ complex smooth vector

fields to complete the null tetrad {m, m̄, l, l} (see Section 2.4), and in the tetrad

(spinor) formalism, the only non-zero Weyl scalar is

Ψ := Ψ0 = W (m̄, l, m, l) = − 1

C2
1P

3

(
1

P̄
− C̄2

)
(3.3a)

the only non-zero component of the Maxwell scalars is

Υ := Υ0 = Habl
alb =

1

2C1P 2
(3.3b)

and the only non-zero component of the Ricci scalars is

Φ := Φ0 = T (l, l) = T (m, m̄) =
1

C1C̄1P 2P̄ 2
(3.3c)

Notice the following symmetry relations

Ψ̄ = Ψ , Ψ̄ = Ψ , Ῡ = −Υ , Φ̄ = Φ = Φ (3.4)

Now, from

2C1P
2Habt

a = −C1∇bP
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we can calculate

∇by = lb lat
a − lb lat

a (∇y)2 = 2lalbt
atb (3.5a)

∇bz = εbacdt
alcld (∇z)2 = 2lalbt

atb + t2 (3.5b)

So we need expressions for g(t, l), g(t, l). From the fact that LtH = 0, we have

[t, l]alb + la[t, l]b − [t, l]alb − la[t, l]b = 0

which we can contract against l and l (using the fact that [t, l]al
a = ∂tl

2 = 0) to arrive

at

[t, l]a = la[t, l]bl
b = Ktla (3.6a)

[t, l]a = la[t, l]bl
b = −Ktla (3.6b)

where the function Kt := [t, l]bl
b. Now

∂t(tbl
b) = Lt(tbl

b) = Kttbl
b

and similarly

∂t(tbl
b) = −Kttbl

b

Lastly, we compute an expression for t by

−H
cb∇bP

2P 2
=

1

4
H2tc = − tc

4C2
1P

4

Therefore, by a direct computation

tc = −(lat
a)lc − (lat

a)lc − εcabd(∇az)lbld (3.7)
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Next is the main lemma of this section, which also gives assertion (3) of Theorem

3.2.1.

Lemma 3.3.7. Assuming Bab and Qabcd vanish, C1C̄2 is real, and |C2|2−C4 = 1, we

have the norms

(∇z)2 =
A− z2

y2 + z2
(3.8a)

(∇y)2 =
A + y2 + |C1|2 − 2C1C̄2y

y2 + z2
(3.8b)

where A is a non-negative constant with z2 ≤ A.

Proof. We will use the tetrad formalism of Klainerman-Ionescu (see Section 2.4) ex-

tensively in the following computation. By the alignment properties (3.3) and the

symmetry properties (3.4), the Maxwell equations simplify to

DΥ = −2θ̄Υ DΥ = −2θΥ

−δΥ = 2ηΥ −δ̄Υ = 2η̄Υ

from which we arrive at

DP = θP , DP = θ̄P , δP = ηP , δ̄P = η̄P (3.9)

From the decomposition (3.5) we then have

∇ay = −θC1Pla − θ̄C1Pla (3.10a)

i∇az = ηC1Pm̄a + η̄C1Pma (3.10b)

Using the fact that y and z are real, taking complex conjugates on the above equations

gives us

θC1P = θ̄C̄1P̄ , θC̄1P̄ = θ̄C1P , ηC1P = −ηC̄1P̄ (3.11)
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The Bianchi equations become

0 = ξ(3Ψ + Φ) (3.12a)

0 = ϑ(3Ψ− Φ) (3.12b)

−D(Ψ +
1

2
Φ) = 3θΨ + θ̄Φ (3.12c)

δ̄(Ψ− 1

2
Φ) = −3η̄Ψ + η̄Φ (3.12d)

−δΦ = 2(η + η)Φ (3.12e)

DΦ = −2(θ̄ + θ)Φ (3.12f)

Because of the triple alignment given by Bab = 0 and Qabcd = 0, the latter four

equations contain essentially the same information as the Maxwell equations. We

examine the first two in more detail. Consider the equation 3Ψ±Φ = 0. This implies

3C̄1C̄2P̄
2 − 3C̄1P̄ ± C1P = 0

or

3C1C̄2

C1C̄1

(y2 − z2)− (3∓ 1)y = 0

6C1C̄2

C1C̄1

yz − (3± 1)z = 0

Taking derivatives, we have

(
6C1C̄2

C1C̄1

y − 3± 1)∇y =
6C1C̄2

C1C̄1

z∇z

(
6C1C̄2

C1C̄1

y − 3∓ 1)∇z = −6C1C̄2

C1C̄1

z∇y

By the assumption that C1C̄2 is real, all the coefficients in the above two equations

are real. Suppose the equation 3Ψ±Φ = 0 is satisfied on an open-set, as ∇y and ∇z
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cannot be parallel by Corollary 3.3.6, we must have then

(
6C1C̄2

C1C̄1

y − 3± 1)∇y =
6C1C̄2

C1C̄1

z∇z = 0

This implies that y and z are locally constant, which contradicts statement (1) in

Corollary 3.3.6. Therefore an equation of the form 3Ψ±Φ = 0 cannot be satisfied on

open sets.

Applying to the Bianchi identities (3.12a,3.12b), we see that ξ = ϑ = ξ = ϑ = 0.

The relevant null structure equations, simplified with the above observation, are

(D + Γ124)η = θ(η − η) (3.13a)

−δθ = ζθ + η(θ − θ̄) (3.13b)

Define the quantity A = C1C̄1PP̄ (∇z)2. Equations (3.10b) and (3.11) imply that

(∇z)2 = 2ηη̄C1C̄1PP̄ , so

0 ≤ A = 2ηη̄C2
1 C̄

2
1P

2P̄ 2

= 2C2
1 C̄

2
1ηη̄P 2P̄ 2

= −(y2 + z2)− (C1C̄1 − 2C1C̄2y)− 2θθC2
1 C̄

2
1P

2P̄ 2

where in the last line we used Proposition 3.3.4, Corollary 3.3.6, Equations (3.10a)

and (3.11), and the assumption that |C2|2 − C4 = 1. By using (3.13a,3.13b) we

calculate

D(ηη̄) = θ(η − η)η̄ + θ̄(η̄ − η̄)η

δ(θθ) = −η(θ − θ̄)θ − η(θ − θ̄)θ
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Thus, with judicial applications of (3.11)

DA = 2C2
1 C̄

2
1 [θ(η − η)η̄ + θ̄(η̄ − η̄)η]P 2P̄ 2 + 4C2

1 C̄
2
1ηη̄(θ + θ̄)P 2P̄ 2

= 0

δA = −δ(z2) + 2C2
1 C̄

2
1P

2P̄ 2[η(θ − θ̄)θ + η(θ − θ̄)θ]

− 4C2
1 C̄

2
1P

2P̄ 2(η + η)θθ

= −δ(z2)

Since Dz = Dz = 0, we have that the function A+z2 is constant. Define A = A+z2.

The nonnegativity of A guarantees that z2 ≤ A, and we have

(∇z)2 =
A

C1C̄1PP̄
=

A− z2

y2 + z2

and

(∇y)2 = (C1∇P )2 + (∇z)2 =
A + y2 + C1C̄1 − 2C1C̄2y

(y2 + z2)

as claimed.

Remark 3.3.8. In the proof above we showed that ξ = ϑ = ξ = ϑ = 0, a conclusion

that in the vacuum case [22] is easily reached by the Goldberg-Sachs theorem. It is

worth noting that in general, the alignment of the principal null directions of the

Maxwell form and the Weyl tensor is not enough to justify the vanishing of all four

of the involved quantities. Indeed, the Kundt-Thompson theorem [39] only guarantees

that ξϑ = ξϑ = 0. In our special case the improvement comes from the fact that

we not only have alignment of the principal null directions, but also knowledge of the

proportionality factor. This allows us to write down the polynomial expression in P

and P̄ which we used to eliminate the case where only one of ξ and ϑ vanishes.

In the remainder of this section, we assume that C1C̄2 is real and |C2|2 − C4 = 1

and prove assertion (4) in Theorem 3.2.1. Let us first define two auxillary vector
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fields. On our space-time, let

na = (A + y2)ta + (y2 + z2)(tbl
bla + tbl

bla) . (3.14)

Define MA := {p ∈M|z2(p) < A}. On this open subset we can define

ba =
∇az

(∇z)2
=

y2 + z2

A− z2
∇az . (3.15)

We also define the open subsets Ml := {p ∈ M|(tala)(p) 6= 0} and Ml :=

{p ∈ M|(tala)(p) 6= 0}. Now, notice that in our calulcations above using the tetrad

formalism, we have only specified the “direction” of l, l and their lengths relative to

each other. We still have considerable freedom left to fix the lapse of one of the

two vector fields and still retain the use of our formalism. On Ml, we can choose the

vector field l such that tal
a = 1 (similarly for l on Ml; the calculations with respect to

Ml are almost identical to that on Ml, so without loss of generality, we will perform

calculations below with respect to Ml) and the vector field l maintaining lal
a = −1.

From (3.5) and Lemma 3.3.7, we have that on Ml we can write

∇ay = −la +
A + y2 + |C1|2 − 2C1C̄2y

2(y2 + z2)
la = −la + Ula (3.16)

which implies lat
a = U , where U is defined on the entirety of M as

U := lat
albt

b =
1

2
(∇y)2 . (3.17)

We consider first a special case when ta is hypersurface orthogonal.

Proposition 3.3.9. The following are equivalent:

1. z is locally constant on an open subset U ⊂M

2. A vanishes on M
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3. z vanishes on M

Proof. (2) =⇒ (3) and (3) =⇒ (1) follows trivially from Lemma 3.3.7. It thus

suffices to show (1) =⇒ (2). Suppose ∇z = 0|U . We consider the imaginary part of

the third identity in Proposition 3.3.4 à la Remark 3.3.5, which shows that z = 0|U .

From Lemma 3.3.7 we have A = 0|U , but A is a universal constant for the manifold,

and thus vanishes identically.

It is simple to check that z = 0 on M implies C−1
1 Habt

a = ∇b
1

C1P
is real, and so

the vanishing of Bab implies Fabt
a = 2(C1C̄1

C̄1P̄
−C1C̄2)C

−1
1 Habt

a is purely real, which by

Frobenius’ theorem gives that ta is hypersurface orthogonal.5

Proposition 3.3.10. Assume A = 0. Then, at any point p ∈ Ml there exists a

neighborhood that can be isometrically embedded into the Reissner-Nordström solution.

This proof closely mirrors that of Proposition 2 in [22].

Proof. We use the same tetrad notation as before. Since z = 0, we have C1P = y

is real, and hence (3.11) implies that θ, θ are real. Furthermore, z = 0 implies via

(3.10b) that η = 0 = η. The commutator relations then gives

[D, D] = −ωD + ωD

[δ, δ̄] = Γ121δ̄ + Γ122δ

which implies that {l, l} and {m, m̄} are integrable. Thus a sufficiently small neigh-

borhood U can be foliated by 2 mutually orthogonal families of surfaces. We calculate

the induced metric on the surface tangent to {m, m̄} using the Gauss equation.

5As to the question whether ta can be hypersurface orthogonal without ∇z = 0: in the next part
we will consider the case where A 6= 0 (implying z is nowhere locally constant), and show that in
the subset Ml ∩MA we have local diffeomorphisms to the Kerr-Newman space-time with non-zero
angular momentum, which implies that A = 0 is characteristic of the Reissner-Nordström metric.
Indeed, as we shall see later, the quantity A is actually square of the normalized angular momentum
of the space-time.

65



First we calculate the second fundamental form χ(X, Y ) for Xa = X1m
a + X2m̄

a

and Y a = Y1m
a + Y2m̄

a. By definition χ(X, Y ) is the projection of ∇XY to the

normal bundle, so in the tetrad frame, evaluating using the connection coefficients,

we have

χ(X, Y )a = X1Y1(Γ131l
a + Γ141l

a) + X1Y2(Γ231l
a + Γ241l

a)

+ X2Y1(Γ132l
a + Γ142l

a) + X2Y2(Γ232l
a + Γ242l

a)

= X1Y1(ϑla + ϑla) + X1Y2(θ̄l
a + θ̄la)

+ X2Y1(θl
a + θla) + X2Y2(ϑ̄la + ϑ̄la)

= −∇
ay

C1P
g(X, Y ) = −∇

ay

y
g(X, Y )

where the last line used the vanishing of ϑ derived in the proof of Lemma 3.3.7 and

Equation (3.10a). We recall the Gauss equation

R0(X, Y, Z, W ) = R(X, Y, Z, W )− g(χ(X, W ), χ(Y, Z)) + g(χ(X, Z), χ(Y,W ))

where X, Y, Z, W are spanned by m, m̄. Plugging in the explicit form of the Riemann

curvature tensor, we can compute by taking X = Z = m, Y = W = m̄ the only

component of the curvature tensor for the 2-surface

R0(m, m̄, m, m̄) = −Ψ− Ψ̄− Φ− (∇y)2

y2

=
C1C̄1

y4
− 2C1C̄2

y3
− (∇y)2

y2
= − 1

y2

using Lemma 3.3.7 in the last equality. Now, since δy = 0, we have that the scalar

curvature is constant on the 2-surface, and positive, which means that its induced

metric is locally the standard metric for S2 with radius |y|. Now, since ∇y 6= 0 on our

open set, it is possible to choose a local coördinate system {x0, y, x2, x3} compatible
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with the foliation. Looking at (3.7) we see that ta is non-vanishing inside Ml, and is

in fact tangent to the 2-surface formed by {l, l}, so we can take t = tx∂x0 for some

function tx. The fact that ta is Killing gives that ∂xAtx = 0 for A = 2, 3. Recall that

we are working in Ml, and we assumed that lat
a = 1, then we can write, by (3.16),

l = ∂y + sx∂x0 for some function sx. The commutator identity

[D, δ] = −(Γ124 + θ̄)δ + ζD

shows that ∂xAsx = 0 by considering the decomposition we have for l in terms of the

coördinate vector fields. Then the Killing relation [t, l] = 0, together with the above,

implies that we can chose a coördinate system {u, y, x2, x3} with ∂u = t and ∂y = l

that is compatible with the foliation. Lastly, we want to calculate gAB = g(∂xA , ∂xB)

in this coördinate system. To do so, we use the fact that

−la = ta + Ula

Then the second fundamental form can be written as

χ(X, Y ) = (∇XY )⊥

= −(∇XY )a(lal
b + lal

b)

= −(∇XY )a(lal
b − (ta + Ula)l

b)

Now, when X, Y are tangential fields, since U only depends on y (recall that z = A =

0), we have that ∇XU = 0. Furthermore, we use g(Y, l) = g(Y, t) = 0 to see

χ(X, Y )b = lbY aXc∇cla − lbY aXc∇cta − lbUY aXc∇cla
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So we have, using the fact that the second fundamental form is symmetric

2χ(X, Y )b = Y aXc(lb − Ulb)Llgac − Y aXclbLtgac

= −Y aXcLlgac∇by

Taking X and Y to be coördinate vector fields, we conclude that

∂ygAB =
2

y
gAB

so that gAB = y2g0
AB where g0

AB only depends on x2, x3. Imposing the condition

that gAB be the matrix for the standard metric on a sphere of radius |y|, we finally

conclude that the line element can be written as

ds2 = −(1− 2C1C̄2y − |C1|2

y2
)du2 + 2dudy + y2dωS2

and thus the neighborhood can be embedded into Reissner-Nordström space-time of

mass C1C̄2 and charge |C1|.

Notice that a priori there is no guarantee that C1C̄2y > 0, this is compatible with

the fact that we did not specify, for the local version of the theorem, the requirement

for asymptotic flatness, and hence are in a case where the mass is not necessarily

positive.

Next we consider the general case where ta is not hypersurface orthogonal. In view

of Proposition 3.3.9, we can assume that A > 0 and z not locally constant on any

open set. Then it is clear that the set MA is in fact dense in M: for if there exists

an open set on which z = A, then Proposition 3.3.9 implies that A = 0 identically

on M. Therefore, the set (Ml ∪Ml) ∩MA is non-empty as long as Ml ∪Ml is

non-empty; this latter fact can be assured since by assumption (L) that ta is timelike

at some point p ∈ M, whereas la and la are non-cöıncidental null vectors, so in a

68



neighborhood of p, we must have lata 6= 0 6= lata. It is on this set that we consider

the next proposition.

Proposition 3.3.11. Assuming A > 0. Let p ∈ U ⊂ Ml ∩MA such that ta, na, ba

and la are well-defined on U , with normalization lata = 1. Then the four vector fields

form a holonomic basis, and U can be isometrically embedded into a Kerr-Newman

space-time.

Before giving the proof, we first record the metric for the Kerr-Newman solution

in Kerr coördinates

ds2 = −
(

1− 2Mr − q2

r2 + a2 cos2 θ

)
dV 2 + 2drdV + (r2 + a2 cos2 θ)dθ2 (3.18)

+

[
(r2 + a2)2 − (r2 − 2Mr + a2 + q2)a2 sin2 θ

]
sin2 θ

r2 + a2 cos2 θ
dφ2

− 2a sin2 θdφdr − 2a(2Mr − q2)

r2 + a2 cos2 θ
sin2 θdV dφ

Notice that the metric is regular at r = M ±
√

M2 − a2 − q2 the event and Cauchy

horizons.

Proof. We first note that in Ml, we have the normalization

na = (y2 + z2)(la + Ula) + (A + y2)ta

For the proof, it suffices to establish that the commutators between na, ba, la, ta vanish

and that the vectors are linearly independent (for holonomy), and to calculate their

relative inner products to verify that they define a coördinates equivalent to the Kerr

coördinate above.

First we show that the commutators vanish. The cases [t, ·] are trivial. Since we

fixed lata = 1, we have that

0 = tb∇b(lat
a) = Kttbl

b = Kt
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so that Kt = 0 and thus [t, l] = [t, l] = 0. Since y and z are geometric quantities

defined from Hab, and U is a function only of y and z, they are symmetric under the

action of ta, therefore [t, n] = 0. Similarly, to evaluate [t, b], it suffices to consider

[t,∇z]. Using (3.5) we see that ∇z is defined by the volume form, the metric, and

the vectors ta, la, la, all of which symmetric under t-action, and thus [t, b] = 0. The

remaining cases require consideration of the connection coefficients. In view of the

normalization condition imposed, ∇ay = −la + Ula, so (3.10a) implies θC̄1P̄ = 1,

θC1P = −U . Recall the null structure equation

−δθ = −ζθ + η(θ − θ̄)

Using

0 = δ(θC̄1P̄ ) = (δθ)C̄1P̄ + θηC̄1P̄

we have

C̄1P̄ (θη + ζθ − ηθ + ηθ̄) = 0

Applications of (3.11) allow us to replace +ηθ̄ by −ηθ in the brackets, and so, since

θC̄1P̄ = DC1P 6= 0, we must have ζ = η, which considerably simplifies calculations.

Next we write

ba = −i
y2 + z2

A− z2
(ηC1Pm̄a − η̄C̄1P̄ma) = i

1

A− z2

(
ηC1C̄

2
1PP̄ 2m̄a − c.c.

)
by expanding ∇az in tetrad coefficients, and where c.c. denotes complex conjugate.

Then, since Dz = 0,

−i(A− z2)[l, b] = D(ηC1C̄1PP̄ 2)m̄a − c.c. + ηC1C̄
2
1PP̄ 2[D, δ̄]− c.c.

We consider the commutator relation, simplified appropriately in view of computa-
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tions above and in the proof of Lemma 3.3.7,

[D, δ̄] = −(Γ213 + θ)δ̄ = (Γ123 −
1

C̄1P̄
)δ̄

together with the structure equation

(D + Γ123)η = θ(η − η)

and the relations in (3.11) and (3.9), we get

D(ηC1C̄
2
1PP̄ 2)m̄a + ηC1C̄

2
1PP̄ 2[D, δ̄]

= (D + Γ123)ηC1C̄
2
1PP̄ 2m̄a − η|C1P |2m̄a + ηD(C1C̄

2
1PP̄ 2)m̄a

= θ(η − η)C1C̄
2
1PP̄ 2m̄a − η|C1P |2m̄a

+ η(θC̄3
1 P̄

3 + 2θC1C̄
2
1PP̄ 2)m̄a

= 0

Hence [l, b] = 0. In a similar fashion, we write

na = |C1P |2la +
1

2
(A + y2 + |C1|2 − 2C1C̄2y)la + (A + y2)ta

From the fact that ba∇ay = 0 and from the known commutator relations, we have

[n, b] = [C1C̄1PP̄ l, b] +
1

2
(A + y2 + |C1|2 − 2C1C̄2y)[l, b] + (A + y2)[t, b]

of which the second and third terms are already known to vanish. We evaluate

[C1C̄1PP̄ l, b] in the same way we evaluated [l, b], and a calculation shows that it also

vanishes. To evaluate [l, n], we need to calculate [l, l]. To do so we write

ta = −Ula − la − η̄C1Pma − ηC̄1P̄ m̄a
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Since [l, t] = 0, we infer

[l, l] = −[l, Ul + η̄C1Pm + ηC̄1P̄ m̄]

= −DUl − [l,
1

|C1P |2
η̄C2

1 C̄1P
2P̄m]− c.c.

Notice in the proof above for [l, b] = 0 we have demonstrated [l, η̄C2
1 C̄1P

2P̄m] = 0, so

[l, l] = −DUl +
D(|C1P |2)
|C1P |2

(η̄C1Pm + ηC̄1P̄ m̄)

Direct computation yields

DU =
y − C1C̄2

y2 + z2
− 2yU

y2 + z2

and

D(C1C̄1PP̄ ) = 2y

(recall that we set Dy = 1) so we conclude that

[l, l] = −y − C1C̄2

y2 + z2
l − 2y

y2 + z2
(l + t)

So, using the decomposition for na given above

[l, n] = [l, (y2 + z2)l + (y2 + z2)Ul + (A + y2)t]

= 2yl + (y − 2C1C̄2)l + 2yt + (y2 + z2)[l, l]

= 0

Having checked the commutators, we now calculate the scalar products between
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various components. A direct computation from the definition yields

b2 =
y2 + z2

A− z2
b · n = 0 b · l = 0

l · n = A− z2 l2 = 0 l · t = 1

t · n =
(|C1|2 − 2C1C̄2y)(z2 − A)

y2 + z2
t2 = −1− |C1|2 − 2C1C̄2y

y2 + z2
t · b = 0

and

n2 = (A− z2)

[
A + y2 − A− z2

y2 + z2

(
|C1|2 − 2C1C̄2y

)]
A simple computation shows that the determinant of the matrix of inner products

yields

| det | = (y2 + z2)2 6= 0

and therefore the vector fields are linearly independent. Thus we have shown that

they form a holonomic basis.

To construct the local isometry to Kerr-Newman space-time, we define coördinates

attached to the holonomic vector fields t, l, b, n with the following rescalings. First,

since A > 0, we can define a > 0 such that A = a2. Then we can define the coördinates

r, θ, V, φ by

t = ∂V

l = ∂r y = r

b =
1

a sin θ
∂θ z = a cos θ

n = −a∂φ

Notice that we can define θ from z in a way that makes sense since z2 ≤ A. Applying

the change of coördinates to the inner products above we see that in r, θ, V, φ the

metric is identical to the one for the Kerr coördinate of Kerr-Newman space-time.
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Furthermore, we see that n, or ∂φ, defines the corresponding axial Killing vector

field.

To finish this section, we need to show that the results we obtained in Propositions

3.3.10 and 3.3.11 can be extended to the manifold M, rather than restricted to

(Ml ∪ Ml) in the former and (Ml ∪ Ml) ∩ MA in the latter. We shall need the

following lemma (Lemma 6 in [22]; the lemma and its proof can be carried over to

our case essentially without change, we reproduce them here for completeness)

Lemma 3.3.12. The vector field na is a Killing vector field on the entirety of M.

The set M\MA = {na = 0}. Furthermore,

• If A = 0, then M\ (Ml ∪Ml) = {ta = 0}

• If 0 < A ≤ (C1C̄2)
2 − |C1|2, then M \ (Ml ∪ Ml) = { either na − y+ta =

0 or na − y−ta = 0} where

y± = 2(C1C̄2)
2 − |C1|2 ± 2C1C̄2

√
(C1C̄2)2 − |C1|2 − A

• If A > (C1C̄2)
2 − |C1|2, then M\ (Ml ∪Ml) = ∅

Proof. First consider the case A = 0. By Proposition 3.3.9, we have z = 0. So

the definition (3.14) and (3.7) show that na vanishes identically. Furthermore, since

MA = ∅ in this case, we have that na is a (trivial) Killing vector field on M vanishing

on M\MA. It is also clear from (3.7) that ta = 0 ⇐⇒ tal
a = tal

a = 0 in this case,

proving the first bullet point.

Now let A > 0. Then Proposition 3.3.11 shows that na is Killing on (Ml ∪

Ml) ∩MA, and does not cöıncide with ta. Since MA is dense in M (see paragraph

immediately before Proposition 3.3.11), we have that na is Killing on Ml ∪Ml (the

overline denotes set closure). We wish to show that Ml ∪Ml = M. Suppose not,

then the open set U = M\Ml ∪Ml is non-empty. In U , tal
a = tal

a = 0, so by (3.5),
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∇ay = 0 in U . Taking the real part of the third identity in Proposition 3.3.4, we must

have y = C1C̄2 in U , which by Lemma 3.3.7 implies A = (C1C̄2)
2 − |C1|2. Consider

the vectorfield defined on all of M given by na−(A+y2)ta = na−[2(C1C̄2)
2−|C1|2]ta.

As it is a constant coefficient linear combination of non-vanishing independent Killing

vector fields on Ml ∪Ml, it is also a non-vanishing Killing vector field. However, on

U , the vector field vanishes by construction. So we have Killing vector field on M

that is not identically 0, yet vanishes on an non-empty open set, which is impossible

(see Appendix C.3 in [45]). Therefore na is a Killing vector field everywhere on M.

Now, outside of MA, we have that z2 = A reaches a local maximum, so ∇az must

vanish. Therefore from (3.14) and (3.7) we conclude that na vanishes outside MA

also, proving the second statement in the lemma.

For the second a third bullet points, consider the function U = 1
2
(∇y)2. By

definition it vanishes outside Ml ∪Ml. Using Lemma 3.3.7 we see that

A + y2 + |C1|2 − 2C1C̄2y = 0

outside Ml ∪Ml. The two bullet points are clear in view of the quadratic formula

and (3.14).

Now we can complete the main theorem in the same way as [22].

Proof of the Main Theorem. In view of Propositions 3.3.10 and 3.3.11, we only need

to show that the isometry thus defined extends to M \ (Ml ∪ Ml) in the case of

Reissner-Nordström and M\ [(Ml∪Ml)∩MA] in the case of Kerr-Newman. Lemma

3.3.12 shows that those points we are interested in are fixed points of Killing vec-

tor fields, and hence are either isolated points or smooth, two-dimensional, totally

geodesic surfaces. Their complement, therefore, are connected and dense, with local

isometry into the Kerr-Newman family. Therefore a sufficiently small neighborhood of

one of these fixed-points will have a dense and connected subset isometric to a patch
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of Kerr-Newman, whence we can extend to those fixed-points by continuity.

3.4 Proof of the main global result

To show Corollary 3.2.2, it suffices to demonstrate that the global assumption (G)

leads to the local assumption (L).

By asymptotic flatness and the imposed decay rate (the assumption that the mass

and charge at infinity are non-zero), we can assume that there is a simply connected

region MH near spatial infinity such that H2 6= 0. It thus suffices to show that

MH = M. Suppose not, then the former is a proper subset of the latter. Let

p0 ∈ M be a point on ∂MH. We see that Theorem 3.2.1 applies to MH, with

C1 taken to be qE + iqB and C3 = M/(qE − iqB). In particular, the first equation

in Proposition 3.3.4 shows that, by continuity, t2 = −1 at p0. Let δ be a small

neighborhood of p0 such that ta is everywhere time-like in δ with t2 < −1
4
, then the

metric g induces a uniform Riemannian metric on the bundle of orthogonal subspaces

to ta, i.e. ∪p∈δ{v ∈ TpM|g(v, t) = 0}. Now, consider a curve γ : (s0, 1] → δ such

that γ(s) ∈ MH for s < 1, γ(1) = p0, and d
ds

γ(s) has norm 1 and is orthogonal to

t. Consider the function (qE + iqB)P ◦ γ. By assumption, |(qE + iqB)P ◦ γ| ↗ ∞

as s ↗ 1. Since Lemma 3.3.7 guarantees that z is bounded in MH, and hence by

continuity, at p0, we must have that y blows up as we approach p0 along γ. However,

| d

ds
(y ◦ γ)| = |∇ d

ds
γy| ≤ C

√
|∇ay∇ay| < C ′ < ∞

where the constant C comes from the uniform control on g acting as a Riemannian

metric on the orthogonal subspace to ta (note that ta∇ay = 0 since y is a quantity

derivable from quantities that are invariant under the t-action), and C ′ arises because

by Lemma 3.3.7, ∇ay∇ay is bounded for all |y| > 2M , which we can guarantee for s

sufficiently close to 1. So we have a contradiction: y ◦ γ blows up in finite time while
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its derivative stays bounded. Therefore MH = M.

3.5 Reduction to the Kerr case

The results stated in Corollary 3.2.2 explicitly makes the assumption that the asymp-

totic charge of the space-time does not vanish. With a small modification to the

statement, combined with the result of Mars [22], we can restate the result to also

include the case of vanishing charge.

Theorem 3.5.1. Let (M, gab, Hab) solve the Einstein-Maxwell system. Assuming

(A1), (A2), and that (M, gab) contains a stationary asymptotically flat end M∞

where ta tends to a time translation, with non-vanishing Komar mass M . Let Ξ′ be

the complex-valued scalar function defined by

∇aΞ
′ = (qE − iqB)Hbat

b

where qE and qB are the asymptotic electric and magnetic charges respectively, and

Ξ′ normalized such that it approaches 0 at spatial infinity. Assume there exists a

complex-valued function P ′ defined whenever F2 6= 0 such that

(P ′)−4 = − F2

(4Ξ̄′ − 2M)2
.

If the double-alignment conditions

(qE + iqB)Fab = (4Ξ̄′ − 2M)Hab

Cabcd =
3P ′

4Ξ̄′ − 2M
(F⊗̃F)abcd

are satisfied whenever the right-hand-sides are well-defined, then we can conclude that

1. either H2 is non-vanishing globally, or that Hab = 0 everywhere,
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2. A = P ′P̄ ′(=∇P ′)2 + (=P ′)2 is a non-negative real constant on the manifold,

3. and (M, gab) is everywhere locally isometric to a Kerr-Newman space-time of

total charge q =
√

q2
E + q2

B, angular momentum
√

AM , and mass M .

Proof. In the cases where q > 0, it is clear to see that with the substitution Ξ′ =

(qE − iqB)Ξ and P ′ = (qE + iqB)P , the definition of P ′ and the double-alignment

conditions become equivalent to the assumptions made in the statement of Corollary

3.2.2. And hence the space-time is locally isometric to a Kerr-Newman space-time of

non-vanishing charge.

The renormalization imposed in the statement of this theorem allows us to in-

corporate the result of Mars. Note that by the stated conditions, if q = 0, then

the scalar function Ξ′ vanishes identically on the space-time. The first alignment

condition implies then that

0 · Fab = −2MHab ,

guaranteeing that Hab vanishes identically on the space-time. Then P ′ can be iden-

tified with the scalar P appearing in [22], and that the second alignment condition

is precisely the alignment condition given in [22] or in [14] (up to factors of 2 which

arises from differing definition of the anti-self-dual projection and from the definition

of the Ernst two-form). Therefore we are allowed to apply Mars’ theorem (or one can

directly modify the proof of Theorem 3.2.1 to account for the renormalization) and

conclude that the space-time is locally isometric to Kerr.

In view of the above reduction, we collect the definition of the renormalized ver-

sions of Bab, Qabcd, and P below. These three quantities will be useful in the next
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chapter.

B′ab := (qE + iqB)Fab − (4Ξ̄′ − 2M)Hab (3.19a)

Q′
abcd := Cabcd −

3P ′

4Ξ̄′ − 2M
(F⊗̃F)abcd (3.19b)

(P ′)−4 := − F2

(4Ξ̄′ − 2M)2
. (3.19c)
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Chapter 4

Uniqueness of the Kerr-Newman

solutions

The strategy for obtaining uniqueness is to rely on Carleman-estimate techniques

as in [14, 15]. The tensor quantities B′ab and Q′
abcd will be seen to verify essentially

decoupled wave equations, and by making some technical assumptions on the bifurcate

sphere, B′ab andQ′
abcd can be seen to vanish on the bifurcate event horizon of the space-

time. By applying the Carleman estimate, the two tensors must vanish throughout

the manifold. As seen in Theorem 3.5.1 from the previous chapter, the vanishing of

the tensors Q′
abcd and B′ab allows the construction of local isometries from the given

space-time into a Kerr-Newman space-time.

4.1 The wave equations for B′ab and Q′
abcd

For the application of Carleman estimates, it is essential that the tensor quantities

B′ab and Q′
abcd verify sourceless wave equations, which can be written schematically as

2gS = υ1A1 ~ S + υ2A2 ~∇S (4.1)
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where, if S is a (p, q) tensor field, A1 is type (p+ q, q +p), A2 is type (p+ q +1, q +p),

and ~ denotes full contraction of all the indices of S against those of A∗. We will let

A∗ be a smooth tensor field constructed of linear combinations of tensor products and

contractions of (assumed) smooth geometric quantities, such as Cabcd,Fab,Hab, Ξ
′ and

their covariant derivatives. υ∗ are scalar coefficients that absorbs the not-a-priori-

smooth terms, such as P ′ and 1
4Ξ̄′−2M

. The exact form of A∗ are not too important;

the form of υ∗ are more so in the application of the Carleman inequality. The crucial

information, however, is that (4.1) is order reducing (that a second order operator

acting on S only gives rise to terms of zeroth or first order terms in S) and at least

linear in S (that it doesn’t contain terms that does not depend on S or∇S tensorially;

note that the dependence can be quadratic or even higher power: it suffices that a

linear factor can be taken out).

Proposition 4.1.1. B′ab satisfies a wave equation of the form (4.1).

Proof. By the computation (2.19), Bab, and hence B′ab, is Maxwell. So using the same

calculation as (2.17),

2gB′ab = −CabcdB′cd (4.2)

as claimed.

Notice that the wave equation for B′ab is decoupled completely from Q′
abcd. This

fact will become useful later. For now, just observe that the above proposition implies

that

2g∇(k)B′ =
k∑

l=0

Al ~∇(l)B′ . (4.3)

For the field Q′
abcd, the wave equation is coupled to higher derivatives of B′ab. The

calculation below is rather ad hoc, and depends on some rather miraculous algebraic

cancellations. Currently, there is no justification, formally or heuristically, on why

such a wave equation should be possible. Indeed, a more detailed understanding of
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the mechanism through which this wave equation is obtained may greatly contribute

to our understanding of stationary black holes.

Proposition 4.1.2. Where it is defined, Q′
abcd satisfies a wave equation of the form

2gQ′ = υ1A1 ~Q′ + υ2A2 ~∇Q′ + υ3A3 ~ B′ + υ4A4 ~∇B′ + υ5A5 ~∇2B′

First it is claimed that it suffices to demonstrate a divergence type equation.

Lemma 4.1.3. Let Sabcd be an anti-self-dual Weyl field which satisfies

∇aSabcd = Jbcd , (4.4)

where Jbcd is some source term, then Sabcd satisfies an inhomogeneous wave equation.

Proof. Since Sabcd is anti-self-dual,

∇aSabcd =
i

2
∇aεabefSef

cd ,

which implies

∇[eSab]cd = − i

3
εeab

kJkcd = J ′
eabcd .

Take the divergence

2gSabcd +∇e∇aSbecd +∇e∇bSeacd = ∇eJ ′
eabcd

and commuting derivatives

2gSabcd = ∇eJ ′
eabcd + [∇a,∇e]Sbecd + [∇b,∇e]Seacd +∇aJbcd −∇bJacd

as claimed.
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We also have a small computational lemma which will also be useful independent

of the proof of the proposition.

Lemma 4.1.4. The scalar P ′, whenever it is well-defined, satisfies

−∇cP
′ =

P ′

F2
Cdcabt

dFab . (4.5)

Proof. Recall F2P ′4 = −(4Ξ̄′ − 2M)2,

Fab∇cFabP
′4 + 2F2P ′3∇cP

′ = −4(4Ξ̄′ − 2M)(qE + iqB)H̄dct
d ,

using (2.18),

−∇cP
′ =

P ′

F2
(Cdcab + Edcab)Fabtd +

2(4Ξ̄′ − 2M)(qE + iqB)

P ′3F2
H̄dct

d .

Observe that

EwaxyFxy =
1

2
(g ? T )waxy(P−F)xy = Tw

x Fxa + T a
yFwy

= 4(H̄wzHxzFxa +HazH̄yzFwy)

=
4H̄wz((qE + iqB)Fxz − B′xz)Fxa

4Ξ̄′ − 2M
+

4HazH̄yz(B′wy + (4Ξ̄′ − 2M)Hwy)

qE + iqB

=
4H̄wzFxa

4Ξ̄′ − 2M
B′zx +

4HazH̄yz

qE + iqB

B′wy +
H̄wa(qE + iqB)F2

4Ξ̄′ − 2M
+
H2H̄wa(4Ξ̄′ − 2M)

qE + iqB

Since

(4Ξ̄′ − 2M)2H2 = (qE + iqB)2F2 + B′2 − 2(qE + iqB)F · B

we write

EwaxyFxy = − 4H̄wzFxa

4Ξ̄′ − 2M
B′xz +

4H̄azFyz

4Ξ̄′ − 2M
B′wy +

2H̄waFxy

4Ξ̄′ − 2M
B′xy

− 2(qE + iqB)(4Ξ̄′ − 2M)

P ′4 H̄wa
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where in the second term on the right hand side we replaced

HazH̄yz = H̄az (qE + iqB)Fyz − B′yz

4Ξ̄′ − 2M

and liberally used multiplication properties of anti-self-dual forms. Noting that by

construction the expression should be antisymmetric in the w, a indices, one sees that

by (2.4c), the first three terms on the right hand side sums to zero. So we have that

EwaxyFxy = −2(qE + iqB)(4Ξ̄′ − 2M)

P ′4 H̄wa , (4.6)

and

−∇cP
′ =

P ′

F2
Cdcabt

dFab

as desired.

As seen briefly in the proof above, some basic strategies involved in the computa-

tion include (1) the ability to exchange Fab and Hab (up to scalar terms) by sacrificing

B′ab and (2) applications of multiplication properties of anti-self-dual forms (as dis-

cussed in Section 2.1.1). The best example of the strategies is the derivation of (4.6)

above. The most difficult term in the computation of ∇aQ′
abcd turns out to be the

divergence of the Weyl curvature, which involves derivatives of the stress-energy ten-

sor. This term gives the only contribution (in the final expression) of terms involving

∇B′.

Proof. (Proposition 4.1.2) By Lemma 4.1.3, it suffices to show that under the stated

conditions, Q′
abcd satisfies a divergence equation with source term depending linearly

on Q′
abcd,B′ab, and ∇cB′ab.
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The goal is to calculate the divergence

∇aQ′
abcd = ∇aCabcd −

3∇aP ′

4Ξ̄′ − 2M
(F⊗̃F)abcd +

12P ′(qE + iqB)H̄xatx
(4Ξ̄′ − 2M)2

(F⊗̃F)abcd

− 3P ′

4Ξ̄′ − 2M

(
2Exa

abtxFcd + Fab∇aFcd −
2

3
IabcdF ef∇aFef

)
= T1 + T2 + T3 −

3P ′

4Ξ̄′ − 2M
(T4 + T5 + T6)

term by term. Immediately, by (4.5)

T2 =
3P ′

F2(4Ξ̄′ − 2M)
(F⊗̃F)abcd(Q′waxytwFxy +

2P ′F2

4Ξ̄′ − 2M
Fwatw) . (4.7)

To consider T1, recall from (2.15)

∇aCabcd = Icdgh(∇gT h
b ) ,

expanding from the right-hand side

∇gT h
b = 4∇g(HbkH̄hk)

and since we act on it by the projection operator P−, it suffices to consider the

anti-symmetric, anti-self-dual part of this expression. By Maxwell’s equations

1

2
∇[gT

h]
b = 2∇[gH̄h]kHbk − 2H̄k[h∇g]Hbk

= −∇kH̄ghHbk + H̄hk∇gHbk − H̄gk∇hHbk

= /L
gh
b + Lgh

b − Lhg
b .

In the following computation, /L
gh
b will be continuously redefined to include all sym-

metric and self-dual parts of the expression, while Lgh
b will contain those terms of

interest. It is clear that the first term on the second line in the equation above is
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self-dual, hence will be grouped into /L
gh

. It suffices to consider Lgh
b = H̄hk∇gHbk.

Now,

∇gHbk =
−4(qE + iqB)H̄xgtxHbk + 2(qE + iqB)(Cxg

bk + Exg
bk)tx −∇gB′bk

4Ξ̄′ − 2M
(4.8)

So

Lgh
b =

2(qE + iqB)(Cxg
bk + Exg

bk)txH̄hk − (qE + iqB)T h
b H̄xgtx − H̄hk∇gB′bk

4Ξ̄′ − 2M
.

Consider the following simple identities:

T adHac = 4HaxH̄dxHac = H2H̄dc (4.9)

iH̄hkεwyzk =
1

2
εhkmlH̄mlεwyzk = −3gh

[wH̄yz] (4.10)

the second one implies that

4IwyzkH̄hk = gwzH̄h
y − gyzH̄h

w − gh
wH̄yz + gh

y H̄wz + gh
z H̄yw = 4Iwy

h
kH̄z

k .

Therefore, with congruence ∼= up to terms that can be thrown into /L
gh
b , we get

2H̄hkEdg
bk
∼=

1

2
[gd

b H̄2Hhg − gg
b H̄

2Hhd − H̄hdT g
b + T dhH̄b

g + 2gh
b H̄2Hgd + gdhH̄2Hb

g] .

Now, to make use of the anti-symmetry in the g, h indices, note that

Xa[bXcd] =
1

6
εbcdeε

efghXafXgh =
i

12
εabcdX 2

which implies

Xa[bXc]d =
i

8
εabcdX 2 − 1

2
XadXbc .
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We can evaluate

Ty[hHg]x = −4H̄ykHk
[hHg]x

= −H̄yk(
i

2
εk

hgxH2 − 2Hk
xHhg)

= −1

2
H2(gyhH̄gx + gygH̄xh + gyxH̄hg)−

1

2
TyxHhg . (4.11)

This implies

2H̄hkEdg
bk
∼= T

[g
b H̄

h]d

and

Lgh
b
∼=

2(qE + iqB)Cxg
bktxH̄hk − H̄hk∇gB′bk

4Ξ̄′ − 2M
.

Expanding Cdg
bk,

H̄hkCdg
bk = H̄hkQ′dg

bk +
3P ′

4Ξ̄′ − 2M
(F⊗̃F)dg

bkH̄hk

= H̄hkQ′dg
bk +

3P ′

(4Ξ̄′ − 2M)(4Ξ′ − 2M)
(F⊗̃F)dg

bk((qE − iqB)F̄hk − B̄′hk) .

Now, considering the anti-symmetric part

(F⊗̃F)d[g
bkF̄h]k = Fd[gFbkF̄h]k − 1

3
F2Id[g

bkF̄h]k

= Fd[gFh]kF̄bk −
1

3
F2Id[gh]kF̄bk

=
i

8
F2εdghkF̄bk +

1

2
FdkFhgF̄bk −

1

3
F2Id[gh]kF̄bk

∼=
1

2
FdkFhgF̄bk +

i

24
F2εdghkF̄bk +

1

12
F2gd[hF̄g]

b

=
1

2
FbkFhgF̄dk +

1

6
F2IghdkF̄bk

= −1

2
(F⊗̃F)gh

bkF̄dk .
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So

T1 = ∇aCabcd = 4IcdghL
gh
b

=
8(qE + iqB)IcdghH̄hkQ′xg

bktx
4Ξ̄′ − 2M

− 4IcdghH̄hk∇gB′bk
4Ξ̄′ − 2M

− 24(qE + iqB)P ′Icdgh(F⊗̃F)xg
bkB̄′hktx

(4Ξ̄′ − 2M)2(4Ξ′ − 2M)

− 12P ′(qE + iqB)(qE − iqB)

(4Ξ̄′ − 2M)2(4Ξ′ − 2M)
(F⊗̃F)cdbkF̄xktx

and we can conclude

T1 − T3 = ∇aCabcd −
12P ′(qE + iqB)H̄xatx

(4Ξ̄′ − 2M)2
(F⊗̃F)abcd

=
8(qE + iqB)IcdghH̄hkQ′xg

bktx
4Ξ̄′ − 2M

− 4IcdghH̄hk∇gB′bk
4Ξ̄′ − 2M

(4.12)

− 24(qE + iqB)P ′Icdgh(F⊗̃F)xg
bkB̄′hktx

(4Ξ̄′ − 2M)2(4Ξ′ − 2M)

− 12P ′(qE + iqB)

(4Ξ̄′ − 2M)2
(F⊗̃F)cdbk(

B̄′xk

4Ξ′ − 2M
)tx

=
qE + iqB

4Ξ̄′ − 2M
(A1 ~Q′)bcd +

1

4Ξ̄′ − 2M
(A2 ~∇B′)bcd (4.13)

+
(qE + iqB)P ′

(4Ξ̄′ − 2M)2(4Ξ′ − 2M)
(A3 ~ B′)bcd

as desired.

For T4, we have

Exa
ab = −1

2
T x

b .

For T5,

Fab∇aFcd = 2(Cxa
cdFab + Exa

cdFab)tx
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Now,

Exa
cdFab = −1

2
(g ? T )lmcdĪxalmFba

= −1

4
(glcTmd + gmdTlc)(g

lxFb
m − gmxFb

l − gl
bFmx + gm

b F lx + gx
bFml)

= −1

2
(gx

[cTd]mFb
m − T x

[cFd]b − gb[cTd]mFmx − Tb[cFd]
x + gx

bFm
[cTd]m) .

Rewriting Txy = 4
4Ξ̄′−2M

H̄x
z((qE + iqB)Fyz − B′yz),

−2(4Ξ̄′ − 2M)Exa
cdFab = (A1 ~ B′)x

bcd − gx
[cH̄d]b(qE + iqB)F2

− gb[cH̄d]x(qE + iqB)F2 + gx
b H̄dc(qE + iqB)F2

+ 4H̄xk(qE + iqB)Fk[cFd]b + 4H̄b
k(qE + iqB)Fk[cFd]

x

= (A1 ~ B′)x
bcd + 2(qE + iqB)(H̄xkFbk + H̄bkFxk)Fcd

= (A1 ~ B′)x
bcd + (4Ξ̄′ − 2M)T x

b Fcd

and

Exa
cdFab = −1

2
T x

b Fcd +
1

4Ξ̄′ − 2M
(A1 ~ B′)x

bcd . (4.14)

On the other hand

Cxa
cdFab = Q′xa

cdFab +
3P ′

4Ξ̄′ − 2M
(F⊗̃F)xa

cdFab

the second term of which we write

(F⊗̃F)xa
cdFab = −F2gx

bFcd −
1

3
F2Ixa

cdFab .
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For T6,

F ef∇aFef = 2Cxa
efF ef tx + 2Exa

efF ef tx

= 2Q′xa
ef txF ef +

4P ′F2

4Ξ̄′ − 2M
Fxa − 4(qE + iqB)(4Ξ̄′ − 2M)

P ′4 H̄xa .

Lastly, observe that for T3,

qE + iqB

4Ξ̄′ − 2M
(F⊗̃F)abcdH̄xa =

1

4Ξ̄′ − 2M
(A1~B′)x

bcd−T x
b Fcd−

qE + iqB

3(4Ξ̄′ − 2M)
F2IabcdH̄xa

so that after a bit of simple regrouping of terms,

T2 + 2T3 −
3P ′

4Ξ̄′ − 2M
(T4 + T5 + T6) = υ1A1 ~Q′ + υ2A2 ~ B′

as desired, where υ∗ depends only on P ′ and (4Ξ̄ − 2M)−1. Combining this with

(4.13), we obtain the desired result.

In view of the previous two propositions, if the vector S = (B′ab,∇cB′ab,Q′
abcd)

is defined to be a smooth section in T 0
2M⊕ T 0

3M⊕ T 0
4M, then S satisfies a wave

equation of type (4.1), namely

2gS = (υ1A1) ~ S + (υ2A2) ~∇S (4.15)

where (υ∗A∗) stands for matrices representing linear transformations on T 0
2M ⊕

T 0
3M⊕ T 0

4M with entries consisting of smooth geometric tensors multiplied by co-

efficients depending on P ′ and (4Ξ̄′ − 2M)−1. It is to this S that we will apply the

Carleman estimates.
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4.2 Initial value on the bifurcate horizon

In this section, the geometric constraint of a non-expanding bifurcate event horizon

and some technical assumptions prescribed at the bifurcate sphere will be seen to

together imply the vanishing of Bab and Qabcd on the event horizon. We will use

the notation Ψ
(K)
i for the complex scalars associated to the Weyl-field Kabcd in a null

tetrad, similarly the notation Υ
(G)
i for complex scalars associated to a two form Gab.

See Section 2.4 for the definition of the scalars in terms of tetrad directions. Notice

that we have G2 = −4(Υ
(G)
0 )2 + 4Υ

(G)
1 Υ

(G)
−1 .

Recall from Section 2.5 that we assume our space-time admits a smooth bifurcate

horizon which is non-expanding (see also Section 1.3 for justification). We were able

to conclude that Υ
(H)
1 = Ψ

(C)
2 = Ψ

(C)
1 = 0 on H+, and that Ψ

(C)
0 and Υ

(H)
0 are constant

along the generators of H±.

Now first consider Fab. Since Υ
(F)
1 = −F (m, l) = −g(∇mt, l), and t ∈ TH+, we

have g(t, l) = 0. Therefore we have

Υ
(F)
1 = g(t,∇ml) = 0 , on H+

by the vanishing of θ and ϑ. Similarly Υ
(F)
−1 = 0 on H−. Therefore by the same

argument as in Section 2.5, B′ab is a free Maxwell field such that Υ
(B′)
±1 |H± = 0, and thus

Υ
(B′)
0 is constant on the geodesic generators of the event horizon. Now, if we assume

that Υ
(B′)
0 vanishes on the event horizon, we see that the Maxwell equation (2.24b)

implies (D−Γ124)Υ
(B′)
−1 = 0 (similarly for Υ−1), and therefore Υ

(B′)
±1 are constant along

generators of the event horizon. We have thus demonstrated

Lemma 4.2.1. Let (M, gab, Hab) be a stationary asymptotically flat solution to the

Einstein-Maxwell system. Assume the space-time admits a smooth non-expanding bi-

furcate event horizon H±. Define Ξ′ as in Theorem 3.5.1. Then a sufficient condition

for B′ab as defined in (3.19a) to vanish identically on the bifurcate horizon is Υ
(B′)
0 = 0
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and that |qE + iqB|2/P ′ = 2Ξ′ on the bifurcate sphere.

We will argue in a similar fashion for Q′
abcd. Consider the Weyl tensor (F⊗̃F)abcd.

It is easily verified that1

Ψ
(F⊗̃F)
±2 = (Υ

(F)
±1 )2

Ψ
(F⊗̃F)
±1 = −Υ

(F)
±1 Υ

(F)
0

Ψ
(F⊗̃F)
0 = −1

3
[Υ

(F)
1 Υ

(F)
−1 + 2(Υ

(F)
0 )2]

In particular, Ψ
(F⊗̃F)
±2 = Ψ

(F⊗̃F)
±1 = 0 on H±. It therefore suffices to consider Ψ

(Q′)
−2 ,

Ψ
(Q′)
−1 , and Ψ

(Q′)
0 on H+.

Now assume the conditions for Lemma 4.2.1 is satisfied, so we can assume B′ab = 0

on the bifurcate event horizon.

Lemma 4.2.2. Assuming the basic geometric set-up as in Lemma 4.2.1. Also assume

the conditions are satisfied such that B′ab = 0 on H±. Then Ψ
(Q′)
0 is constant along

the generators of the horizon.

Proof. We separately consider the case of qE + iqB = 0 and qE + iqB 6= 0. As

discussed in Section 3.5, in the case of vanishing charge, Ξ′ = 0 by definition, and

the assumption that B′ab = 0 leads to that Hab = 0 on the horizon. This implies

that Fab obeys a source-free Maxwell equation when restricted to the horizon, and

in particular Υ
(F)
0 is constant along generators of the horizon, and thus also P ′. By

definition of Q′
abcd, if follows that Ψ

(Q′)
0 is constant along generators of the horizon.

In the case of non-vanishing charge. The vanishing of B′ab allows us to re-write

3P ′

4Ξ̄′ − 2M
Ψ

(F⊗̃F)
0 = −P ′(4Ξ̄′ − 2M)

(qE + iqB)2
(Υ

(H)
0 )2 .

1Indeed, this is one of the reasons behind the definition of the symmetric spinor product to start
with.
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Noticing that Υ
(H)
0 is constant along the horizon, it suffices to consider DP ′ and

DΞ′ on H+. In the latter, DΞ′ = (qE − iqB)H(t, l). Using that t is tangent to the

horizon, immediately DΞ′ = 0. Similarly, in the former, using (4.5), we see that

DP ′ ∝ Cabcdt
albF cd ∝ Ψ

(C)
0 Υ

(F)
1 + Ψ

(C)
1 Υ

(F)
0 + Ψ

(C)
2 Υ

(F)
−1 and hence DP ′ = 0. Therefore

we conclude that Ψ
(Q′)
0 is constant along generators of the horizon.

With this in mind, using the reduced Bianchi identities (2.27a, 2.27b), we can also

prove a criterion for the vanishing of Q′
abcd on H±.

Lemma 4.2.3. Let (M, gab, Hab) be a stationary asymptotically flat solution to the

Einstein-Maxwell system. Assume the space-time admits a smooth non-expanding

bifurcate event horizon H±. Define Ξ′ as in Theorem 3.5.1. Further assume that B′ab

vanishes on H±. Then a sufficient condition for Q′
abcd as defined in (3.19b) to vanish

identically on H± is that Ψ
(Q′)
0 = 0 on the bifurcate sphere H0.

Proof. Recall that Ψ
(Q′)
−2 and Ψ

(Q′)
−1 vanishes on H0. Therefore in suffices to demon-

strate that their D derivative is proportional to themselves. Again we treat the cases

with and without charge separately.

Assume first that the charge vanishes. By the same argument as in the proof of

Lemma 4.2.2, we have that Hab vanishes on the horizon and Fab is free Maxwell on

the horizon. Now consider

(D − Γ124)(
3P ′

4Ξ̄′ − 2M
Ψ

(F⊗̃F)
−1 ) = − 3P ′

4Ξ̄′ − 2M
Υ

(F)
0 (D − Γ124)Υ

(F)
−1

=
3P ′

4Ξ̄′ − 2M
Υ

(F)
0 (δ̄ + 2η̄)Υ

(F)
0

=
3P ′

4Ξ̄′ − 2M

1

2
(δ̄ + 4η̄)(Υ

(F)
0 )2 .

Observe that (P ′)4 = −(4Ξ̄′ − 2M)2/F2 = (4Ξ̄′ − 2M)2/(2Υ
(F)
0 )2. Immediately

∇P ′ = − P ′

4(Υ
(F)
0 )2

∇(Υ
(F)
0 )2 ⇒ ∇(P ′(Υ

(F)
0 )2) =

3

4
P ′∇(Υ

(F)
0 )2

93



if the derivative ∇ is taken in TH+. This implies

(D − Γ124)(
3P ′

4Ξ̄′ − 2M
Ψ

(F⊗̃F)
−1 ) = (δ̄ + 3η̄)

2P ′

4Ξ̄′ − 2M
(Υ

(F)
0 )2

= −(δ̄ + 3η̄)(
3P ′

4Ξ̄′ − 2M
Ψ

(F⊗̃F)
0 )

which, in view of (2.27b) and initial assumptions in the statement of the lemma,

means that (D − Γ124)Ψ
(Q′)
−1 = 0, and hence Ψ

(Q′)
−1 = 0 on H+.

For Ψ
(Q′)
−2 , it suffices to observe that Proposition 4.1.2 implies that Q′

abcd is a Weyl

field whose source depends on itself, B′ab and ∇cB′ab. Therefore it satisfies an equation

similar to (2.27a) with additional source terms (and no terms coming from the Ricci

tensor). By the vanishing of all other components of Ψ
(Q′)
∗ , and the vanishing of B′ab,

it is clear that Ψ
(Q′)
−2 satisfies a transport equation of the form

DΨ−2 = AΨ−2

where we can remove the dependence on the ∇B′ab term because, as seen in (4.13),

that term is also linear in Hab, which is seen to vanish on the horizon in the case

without charge.

Now consider the case where the charge does not vanish. By the identification

of (qE + iqB)Fab = (4Ξ̄′ − 2M)Hab, a similar computation can be performed. First

remark that as in the proof of Lemma 4.2.2, DP ′ = DΞ′ = 0.

(D − Γ124)(
3P ′

4Ξ̄′ − 2M
Ψ

(F⊗̃F)
−1 ) = (D − Γ124)(

3P ′(4Ξ̄′ − 2M)

(qE + iqB)2
Ψ

(H⊗̃H)
−1 )

= −3P ′(4Ξ̄′ − 2M)

(qE + iqB)2
Υ

(H)
0 (D − Γ124)Υ

(H)
−1

=
3P ′(4Ξ̄′ − 2M)

2(qE + iqB)2
(δ̄ + 4η̄)(Υ

(H)
0 )2 .

Now note that (P ′)−4 = −H2/(qE + iqB)2 under the assumption of B′ab = 0. So just
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as before

(D − Γ124)(
3P ′

4Ξ̄′ − 2M
Ψ

(F⊗̃F)
−1 ) = (4Ξ̄′ − 2M)(δ̄ + 3η̄)

2P ′

(qE + iqB)2
(Υ

(H)
0 )2 .

Now, let us re-examine Proposition 3.3.2. In it, to demonstrate that∇c(P
−1−2Ξ) = 0,

we need that QdcabHabtd = 0. For the proposition we assumed that Qabcd vanishes

in all components, but in individual situations, it will not be strictly necessary! For

example, consider 2δΞ′ on H+. Since the H(l,m) component vanishes, the only com-

ponents of QdcabHabtd to consider are Q(t,m, l, l) and Q(t,m,m, l), both of which are

already known to vanish on H+. Hence on H+ 2δΞ′ = |qE + iqB|2δ(P ′)−1. Using this

fact

4δ̄Ξ̄′ = −2|qE − iqB|2

(P̄ ′)2
δ̄P̄ ′ =

|qE − iqB|2

4P̄ ′(Ῡ
(H)
0 )2

2δ̄(Ῡ
(H)
0 )2 = 2(qE + iqB)P̄ ′δ̄(Ῡ

(H)
0 ) .

so

(D − Γ124)(
3P ′Ψ

(F⊗̃F)
−1

4Ξ̄′ − 2M
) = −(δ̄ + 3η̄)(

3P ′Ψ
(F⊗̃F)
0

4Ξ̄′ − 2M
)− 2P̄ ′

P ′ Υ
(H)
0 δ̄(Ῡ

(H)
0 ) .

Observe that

δP ′δ̄P ′ =
(P ′)4

|qE + iqB|4
4δΞ′δ̄Ξ′ = − 4

H2
H(t,m)H(t, m̄)

Since H(t, l) = 0, 8H(t,m)H(t, m̄) = H2t2. So this implies that δP ′δ̄P ′ ∈ R−. In

other words δ̄P̄ ′ = −δ̄P ′. A little bit of algebraic manipulations gives

−2
P̄ ′

P ′Υ
(H)
0 δ̄(Ῡ

(H)
0 ) = −2

|qE + iqB|2P̄ ′

P ′
1

P ′2 δ̄
1

P̄ ′2

= 4|qE + iqB|2
1

P ′3
1

P̄ ′2 δ̄P̄ ′

= 2|qE + iqB|2
1

P̄ ′2 δ̄
1

P ′2

= 2Ῡ
(H)
0 δ̄Υ

(H)
0 = δ̄

1

2
Φ0 − 2Υ

(H)
0 δ̄Ῡ

(H)
0
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to which we now apply the Maxwell equation (2.24b) and compare to the reduced

Bianchi identity (2.27b) to see that (D − Γ124)Ψ
(Q′)
−1 = 0.

For the term Ψ
(Q′)
−2 , we argue the same as in the charge-less case. But now we

need to control (by examining the divergence relation) IcdghH̄hk∇gB′bkm̄blcm̄d since

Hab no longer vanishes on the boundary and ∇cB′ab is not a priori controllable (may

contain derivatives transversal to the null hypersurface). A closer examination reveals,

however, that the only non-zero terms from Icdgh is I(l, m̄, l,m), so the only term

carrying transversal derivatives of B′ab is

tr I(l, m̄, l,m)H̄(m̄, ·)DB′(m̄, ·) .

By inserting the proper pairs from the null tetrad to compute the trace, it is imme-

diately obvious that the only term for which the H̄ term does not vanish is H̄(m̄, m),

whose pairing requires us to evaluate DB′(m̄, m̄) which is always zero as B′ is con-

structed to be antisymmetric. Hence Ψ
(Q)′

−2 also satisfies a transport equation of type

DΨ−2 = AΨ−2, which by the condition that Ψ
(Q′)
−2 vanishes on the bifurcate sphere,

implies that Ψ
(Q′)
−2 = 0 on the horizon.

Remark 4.2.4. One can also in principle demonstrate the vanishing of the Ψ
(Q′)
−2

components by considering the Bianchi identity (2.27a). The computations, however,

is not any more enlightening then the argument given herein.

Now we give an example of sufficient scalar conditions (these are what we will use

in the sequel) for B′ab and Q′
abcd to vanish on the horizon.

Corollary 4.2.5. Let (M, gab, Hab) be a stationary asymptotically flat solution to

the Einstein-Maxwell system. Assume the space-time admits a smooth non-expanding

bifurcate event horizon H±, and assume that the stationary Killing vector field t only

vanishes on a discrete subset of H0. Define Ξ′ as in Theorem 3.5.1. If we further

assume that on the bifurcate sphere H0:
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• 4|Ξ′| < 2M

• B′2 = 0, and

• (4Ξ̄′−2M)∂c(P
′)−1 = 2Fact

a, when the derivative is taken in directions tangent

to H0.

then Q′
abcd and B′ab vanishes on H±.

Proof. The first condition is necessary in guaranteeing that the quantities which de-

pend on (4Ξ̄′− 2M)−1 are well-defined. Notice that it is trivially satisfied in the case

with vanishing charge.

Observe that due to the vanishing of the Υ
(B′)
±1 , B′2 = −4(Υ

(B′)
0 )2 and immediately

the second condition implies that Υ
(B′)
0 = 0 on H0.

A quick computation analogous to that for (4.5) shows that the third equality

implies

(4Ξ̄′ − 2M)

P ′ Cdcabt
dFab = 2F2Fdct

d .

Now, noticing that t is tangent to H0, and that the only non-vanishing component of

Fab on the bifurcate sphere is Υ
(F)
0 , we get

(4Ξ̄′ − 2M)

P ′ g(t,m)Ψ
(C)
0 = 2(Υ

(F)
0 )2g(t,m)

which, by the assumption that t only vanishes discretely, gives (4Ξ̄′−2M)
P ′

Ψ
(Q′)
0 = 0. In

particular, by the first condition assumed in the corollary, Ψ
(Q′)
0 = 0.

By Lemmas 4.2.1 and 4.2.3 we have the desired result.

Remark 4.2.6. In the case with non-vanishing charge, the third condition can be

replaced by requiring |qE + iqB|2/P ′ = 2Ξ′, a form more consistent with the conditions

given in [14].

Remark 4.2.7. The first condition in the Corollary, that |4Ξ̄′| < 2M , is consistent

with the physical assumption that the charge of the space-time is smaller than the
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mass. Indeed, as we have seen in Chapter 3, the condition can be heuristically re-

written as |qE + iqB|2/|P ′| < M . In the Reissner-Nordström case, P ′ was seen to be

the radius r. At the event horizon, |qE + iqB|2/P ′ −M = −
√

M2 − |qE + iqB|2 < 0.

This also illustrates why the condition is not necessary when the charge vanishes.

4.3 Carleman estimate

In the proof we will use the generalized Carleman estimates due to Ionescu and

Klainerman [14]. Here we collect the statements and definitions.

Let B1 be the open ball of radius 1 centered at the origin in Minkowski space.

Assume we have a coördinate chart Πx0 from B1 to some neighborhood of x0 ∈ M,

with the image of the origin being x0. Denote the image Πx0(B1) =: B(x0). By

abuse of notation, write g also for the pull-back of the metric (Πx0
∗ g) on B1. (In the

following, we will often abuse the diffeomorphism Πx0 that, functions and tensors

defined on the neighborhood B(x0) will be identified with their pull-backs to B1 and

vice versa.) Let B ⊂ B1 be an open set, and let φ be a complex-valued smooth

function on B. Let j be a non-negative integer, we will write

|∂(j)φ(x)| :=
4∑

α1,...,αj=1

| ∂

∂xα1
· · · ∂

∂xαj
φ(x)| (4.16)

for the size of the j-th derivative of φ. This is necessary as the geometric norm is

Lorentzian and is not positive definite.

Let V be a smooth vector field on B1. Expressed in coördinates, we can write

V =
∑4

α=1 V α ∂
∂xα . We assume there exists a number A0(V ) such that

sup
B1

4∑
j=0

4∑
β=1

|∂(j)V β| ≤ A0 , (4.17)

in other words we control the norms of the first 4 derivatives of the coefficients of V .
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Definition 4.3.1. Fix 0 < ε1 ≤ 1/A0(V ). A family of weights hε : Bε10 → R+

defined for 0 < ε < ε1 is called V -conditional pseudo-convex if for any ε ∈ (0, ε1) the

following are satisfied:

hε(0) = ε , sup
Bε10

4∑
j=1

εj|∂(j)hε(x)| ≤ ε/ε1 , |V (hε)(0)| ≤ ε10 . (4.18a)

Writing ∇ for the metric connection, and taking contractions relative to the metric g

∇ahε∇bhε(∇ahε∇bhε − ε∇2
abhε)|x=0 ≥ ε2

1 . (4.18b)

And ∃µ ∈ [−ε−1
1 , ε−1

1 ] such that for any tangent vector at T0B1,
∑4

α=1 Xα ∂
∂xα ,

ε2
1

4∑
α=1

(Xα)2 ≤ µg(X, X)−∇2
X,Xhε + ε−2(|g(X, V )|2 + |∇Xhε|2)|x=0 . (4.18c)

Definition 4.3.2. A function eε : Bε10 → R will be called a negligible perturbation

if

sup
Bε10

|∂(j)eε| ≤ ε10 (4.19)

for j = 0, . . . , 4.

For justification of the pseudo-convexity condition given, see Remark 3.2 in [14].

With the above definitions, we have the following Carleman inequality.

Proposition 4.3.3 (Ionescu-Klainerman [14]). Fix the vector field V and the constant

A0(V ). Fix ε1 as in Definition 4.3.1, and let {hε} be a V -conditional pseudo-convex

family of weights, and {eε} a family of negligible perturbations. Then there is a

ε ∈ (0, ε1) sufficiently small and a constant C̃ε sufficiently large that for any λ ≥ C̃ε

and any φ ∈ C∞
0 (Bε10),

λ‖e−λfεφ‖L2 + ‖e−λfε |∂(1)φ|‖L2 ≤ C̃ελ
−1/2‖e−λfε2gφ‖L2 + ε−6‖e−λfεV (φ)‖L2 , (4.20)
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where fε := ln(hε + eε).

4.4 Uniqueness of Kerr-Newman metric

In this section, we give a proof of the conditional uniqueness of the Kerr-Newman

metric among smooth stationary asymptotically flat solutions to the Einstein-Maxwell

equations. First we give the assumptions. Let (M, gab, Hab) be a smooth space-time

solving the Einstein-Maxwell equations. Let t be a smooth Killing vector-field.

(AF) We assume the solution and the vector field t is stationary asymptotically flat.

See Remark 3.1.1. We can rephrase the decay condition (slightly strengthened)

here, following [14]. Let M∞ be the stationary asymptotic end diffeomorphic

to R× (R3 \BR) for some large radius R. Assume that in the local coördinates

(s, x1, x2, x3) given by this diffeomorphism, we have ∂s = t, and that with

r =
√

(x1)2 + (x2)2 + (x3)2,

g(t, t) = −1 +
2M

r
+ O(r−2) , g(xα, xβ) = δαβ + O(r−1) , g(t, xα) = O(r−2)

(4.21)

for some M > 0.

We define the black hole, white hole, and exterior regions B, W, D as in Section

1.3. We also assume that there exists an embedded space-like hypersurface Σ0

diffeomorphic to R3 \ B1/2. We ask that Σ0 ∩M∞ is equal to the s = 0 slice.

Denote by T0 the future directed unit normal to Σ0. Assume that every orbit

of t in D is complete and intersects Σ0 ∩D transversely.

(SBS) Let H± and H0 be defined as before. Assume that H0 ⊂ Σ0 and is equal to the

image of the sphere of radius 1 in R3 \ B1/2 under the diffeomorphism given

above.
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Also assume that there exists a neighborhood O of H0 such that H±∩O are are

smooth null hypersurfaces that are non-expanding and intersect transversally in

H0. We will abuse the notation to also denote H±∩O by H± where no confusion

is possible. Also assume that t is tangent to H± and does not vanish identically

on H0.

(T) We also need some technical conditions on H0. Define Ξ′ as in Theorem 3.5.1,

and P ′,B′ab and Q′
abcd as in (3.19c,3.19a, 3.19b) wherever it makes sense. We

require that on the bifurcate sphere

< 1

Ξ′ >
2

M
(4.22)

B′2 = 0 (4.23)

(4Ξ̄′ − 2M)∇X(P ′)−1 = 2F(t,X) (4.24)

for any X ∈ TH0, and that the following are each satisfied at some (possibly

different) point in H0

t2 + 1 = <(
2M

P ′ )−
∣∣∣∣qE + iqB

P ′

∣∣∣∣2 (4.25)

<(P ′) > M (4.26)

Remark 4.4.1. That the assumptions (AF) and (SBS) are reasonable have been, the

author hopes, demonstrated in Chapter 1. See also Remark 1.1 in [14].

The technical conditions (4.22) and (4.23) are those used in Corollary 4.2.5. In-

deed, when Ξ′ 6= 0, (4.22) implies |Ξ′| ≥ <Ξ′ > 2|Ξ|2/M , which implies 4|Ξ′| < 2M .

This condition should be compared with condition (1.7) in [14]. That this condition

has to be prescribed on the entire bifurcate sphere and not just at a point is a com-

plication introduced by the Maxwell structure. The condition (4.24) is a relaxation of

the condition (1.6) in [14] (in essence the former is the latter’s derivative). Observe
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that if we have a priori knowledge that the Maxwell field vanishes identically, (4.24)

and (4.25) together implies condition (1.6) in [14]. In general, (4.24) and (4.25) are

the minimal conditions required to recover the crucial Lemma 7.4 in [14]; see also

Lemma 3.3.7 in Chapter 3.

Remark 4.4.2. The technical condition (4.25) is necessary in view of the local version

of the isometry theorems (see Theorem 3.2.1 herein and Theorem 1 in [23]), as they

essentially fix the one remaining free constant (C4 in Theorem 3.2.1) to allow the

derivation of Lemma 3.3.7. This constant can be interpreted as carrying information

from spatial infinity; it is through the precise value of this constant that we can use

the condition that our local neighborhood can be embedded in a space-time that is

stationary asymptotically flat. One should compare with it the constants M and qE +

iqB, which can be made arbitrary (as long as M > |qE + iqB|) without impact on most

of the proof.

Remark 4.4.3. The conditions (4.22) and (4.26) are relatively mild: they are mani-

festations of the requirement that the black hole is non-extremal: that M2−a2−|qE +

iqB|2 > 0.

The alignment conditions (4.23), (4.24), and (4.25) are the main technical as-

sumptions. They represent some sort of rigidity assumption on the bifurcate sphere

of a black hole solution. It is hoped that they may be eventually removed.

Lemma 4.4.4. Under the assumption (AF), (SBS), (T), the quantity <(P ′) is con-

stant on H±, and by (4.25) and (4.26) we have M < <(P ′) ≤ 2M on H0. As a

consequence Q′
abcd is well-defined in a neighborhood of H0.

Proof. Let x0 be the point on which (4.25) holds. Since ta is space-like, this implies

that |P ′| ≤ 2M at the point by rearranging the algebraic identity. Therefore P ′ is

well-defined in a small neighborhood N ⊂ H0. Corollary 4.2.5 implies that Q′
abcd, B′ab

and their first derivatives vanish on N . In view of the computations leading up to
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Lemma 3.3.7, in particular (3.5), one sees that the same decomposition holds and

therefore <(P ′) = y is constant on N . Therefore P ′ is well-defined on the entirety of

H0. By (4.25) and (4.26), it is then clear that M < <(P ′) ≤ 2M .

We now state the main theorem of this chapter

Theorem 4.4.5 (Conditional Uniqueness of Kerr-Newman). Let (M, gab,Hab) rep-

resent a smooth stationary space-time solving the Einstein-Maxwell equations. Let

t denote the stationary Killing vector-field and assume that Hab is also fixed by the

symmetry generated by t. Also assume (AF), (SBS), and (T) as above. Then the

exterior region D ∈M is everywhere locally isometric to the Kerr-Newman solution.

Here we’ll give a quick overview of the method of proof. By the assumption

that H± intersects transversely at the bifurcate sphere and the assumption that the

black hole is non-extremal, we can apply the V -conditional Carleman estimate with

V being the zero vector field, and the pseudo-convex weights given by the double-

null foliation, in a small neighborhood of H0, which shows that B′ab and Q′
abcd both

vanish in a neighborhood of H0. The vanishing of B′ab and Q′
abcd implies that we can

use the Characterization Theorem 3.2.1, in particular Lemma 3.3.7. The conditions

for applying the lemma are all satisfied in view of the technical assumptions (T).

Therefore in the neighborhood we obtain control for y = <(P ′).

To extend beyond the first neighborhood, we again apply the Carleman estimate

now with V being the Killing vector field t and the pseudo-convex weights being the

radial function y. By construction y is “increasing as we get away from the black

hole”. Since ∇y = ∇<(Ξ′)−1, we see that condition (4.22) will be satisfied uniformly,

and we will have control on (4Ξ′ − 2M)−1 throughout. Therefore by looking at the

form of the wave equation (4.15), we can continue the Carleman estimate as long as

P ′ remains bounded. But by technical assumption (4.25), and the argument given in

Section 3.4, P ′ cannot blow-up at any finite Riemannian distance from the bifurcate
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sphere (more precisely, using the Riemannian metric on Σ0, y cannot blow-up at any

finite distance from H0), and so we can cover the entire exterior region.

The remainder of this section will be used to realize the above heuristics.

4.4.1 The first neighborhood

First we give some quantitative control on the double null foliation constructed in

Section 2.5.2. Recall that Oε is defined as a neighborhood of H0 such that the optical

functions |u|, |u| are bounded by ε. Fix ε0 as in Section 2.5.2 such that Ω > 1
2

on

Oε0 . By assumption (AF), t intersects Σ0 transversally, so |g(t, T0)| > 0 on Σ0 ∩D.

Therefore we have that for any small 0 < ε < ε0, there is a corresponding large

constant Ãε such that

|g(t, T0)| >
1

Ãε

, ∀x ∈ (Σ0 ∩D) \Oε . (4.27)

With a possible reduction on ε0, we can require that there exists a constant A0 such

that

u

u
+

u

u
≤ A0 , ∀x ∈ Oε0 ∩ Σ0 ∩D , (4.28)

(this reflects the fact that Σ0 is space-like and the level-surfaces of u, u are null).

Similarly, in view of Lemma 4.4.4, we can require that ε0 is chosen small enough such

that P ′, B′ab, and Q′
ab is well-defined on Oε0 .

We now construct a suitable set of coördinates in a tubular neighborhood of Σ0

following [14]. By possibly enlarging the constant A0 above, we can arrange so that

at every point x0 ∈ Σ0 ∩ D̄, there exists a diffeomorphism Πx0 from the ball of radius

1 B1, centered at the origin, to a neighborhood B(x0) ⊂ M, with Πx0(0) = x0, and
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satisfying

sup
x0∈Σ0∩D̄

sup
x∈B1

6∑
j=0

4∑
β,γ=1

|∂(j)(Πx0
∗ g)βγ|+ |∂(j)(Πx0

∗ g)−1
βγ | ≤ A0 (4.29a)

sup
x0∈Σ0∩D̄

sup
x∈B1

6∑
j=0

4∑
β=1

|∂(j)(Πx0
∗ t)β| ≤ A0 (4.29b)

sup
x0∈Σ0∩D̄

sup
x∈B1

5∑
j=0

4∑
α,β=1

|∂(j)(Πx0
∗ H)αβ| ≤ A0 (4.29c)

where (Πx0
∗ g)βγ is the matrix representing the pull-back of the metric g, similarly

(Πx0
∗ g)−1

βγ is the inverse matrix, (Πx0
∗ t)β denotes the coördinate coefficients of the vector

field on B1 representing the Killing vector field ta, and (Πx0
∗ H)αβ is the coördinate

coefficients of the pull-back two-form corresponding to the Maxwell field. Such a

choice of diffeomorphisms is always possible on any compact region; that we can do

it for all of Σ0∩ D̄ is due to asymptotic flatness. Now let M̃ := ∪Σ0∩D̄B(x0). We can

arrange for M̃ to be simply connected.

The compactness of H0 also allows us to assume that A0 is chosen so that

sup
x0∈H0

sup
x∈B1

[
6∑

j=0

(
|∂(j)Πx0

∗ u|+ |∂(j)Πx0
∗ u|

)
+

4∑
α=1

(
| ∂

∂xα
Πx0
∗ u|−1 + | ∂

∂xα
Πx0
∗ u|−1

)]
≤ A0

(4.30)

By compactness of H0 again, we can require that A0 is chosen such that we have

“room” in (4.22) and (4.26):

< 1

Ξ′ >
2

M
(1 + A−1

0 ) ∀x0 ∈ H0 (4.31a)

<(P ′) > M(1 + A−1
0 ) for some x0 ∈ H0 (4.31b)

Lastly, we also require A0 ≥ ε−1
0 . For the rest of the proof, ε0 and A0 will be fixed

constants. We will also write CA0 for an arbitrary constant that depends polynomially

on A0. Between different expressions CA0 may be different.
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Remark 4.4.6. The control given by (4.29) implies that we have control of the

coördinate expressions of the following in terms of a polynomial function of A0:

• Fab up to five derivatives,

• the first six (but not the zeroth order) derivatives of Ξ′,

• when |4Ξ′ − 2M | > A−1
0 , and when F2 > A−1

0 , control of P ′ and its first five

derivatives,

• B′ab up to five derivatives,

• when |4Ξ′ − 2M | > A−1
0 , and when F2 > A−1

0 , control of Q′
abcd up to five

derivatives.

Lastly, we observe that by Taylor’s theorem with remainders, if X is an object with

which we have control of first k derivatives, and assume that X vanishes on the

bifurcate horizon, then we can write X = uuX ′ for some smooth function X ′ whose

first k − 2 derivatives we can control.

Now, let the weight function hε = ε−1(u+ε)(u+ε) be defined in Oε2 for 0 < ε < ε0.

Also let Nx0 : B(x0) → [0, 1) be the function

Nx0(x) = |(Πx0)−1(x)|2 (4.32)

where the norm is the Euclidean norm. The following Carleman estimate is a conse-

quence of the bifurcate null geometry, and does not depend on the Einstein-Maxwell

equations.

Lemma 4.4.7 (Ionescu-Klainerman, see Lemma 6.2 in [14]). There is ε ∈ (0, ε0)

sufficiently small and depending on A0, and C̃ε sufficiently large, such that for any

x0 ∈ H0, any λ ≥ C̃ε, and any φ ∈ C∞
0 (Πx0Bε10),

λ‖e−λfεφ‖L2 + ‖e−λfε |∂(1)φ|‖L2 ≤ C̃ελ
−1/2‖e−λfε2gφ‖L2 (4.33)
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where fε = ln(hε + ε12Nx0).

The proof of the lemma, which we omit here, is an application of the general

Carleman inequality Proposition 4.3.3 with V being the zero vector field. Using the

above lemma, we obtain

Proposition 4.4.8. There exists r1 = r1(A0) > 0 such that Q′
abcd and B′abcd vanishes

in Or1 ∩D.

Proof. The proof is a direct adaptation of the proof for Proposition 6.1 in [14]. We

include it here for completeness. Let ε = ε(A0) be fixed by the previous lemma.

Write S as the vector valued function whose entries are B′(∂α, ∂β), ∇B′(∂α, ∂β, ∂γ),

and Q′(∂α, ∂β, ∂γ, ∂δ). By definition of ε0, S is smooth and satisfies a wave equation

with smooth coefficients. We therefore have the estimate

|2gS|`∞ ≤ CA0|∂(1)S|`∞ + |S|`∞ (4.34)

in Bε10 .

To apply the Carleman estimate, however, we need a function with compact sup-

port. So we apply a cut-off to show that S vanishes identically in Bε40 ∩D. Fix x0

in H0, and let η : R → [0, 1] supported in [1/2,∞) and equals to 1 on [3/4,∞). For

arbitrary δ ∈ (0, 1], define

Sδ,ε = S1Dη(uu/δ)(1− η(Nx0/ε20)) = S η̃δ,ε . (4.35)

By construction it has compact support in Bε10 so we can apply the Carleman esti-

mate.

Compute

2gSδ,ε = η̃δ,ε2gS + 2∇aS∇aη̃
δ,ε + S2gη̃

δ,ε .
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By letting λ be sufficiently large in the Carleman estimate, we have that

λ‖e−λfε η̃δ,ε|S|`∞‖L2 ≤

C̃ε

(
‖e−λfε |∇aS∇aη̃

δ,ε|`∞‖L2 + ‖e−λfε |S|`∞(|2gη̃
δ,ε|+ |∂(1)η̃δ,ε|)‖L2

)
.

Now observe that we can define two sets

Gδ := {x ∈ Bε10 ∩D : u(x)u(x) ∈ (δ/2, δ)}

and

Gε := {x ∈ Bε10 ∩D : Nx0(x) ∈ (ε20/2, ε20)}

where, by construction, |2gη̃
δ,ε|+ |∂(1)η̃δ,ε| is supported. We claim now that

|2gη̃
δ,ε|+ |∂(1)η̃δ,ε| ≤ Cη(δ

−11Gδ + 1Gε) . (4.36)

For the term |∂(1)η̃δ,ε| the estimate follows from the definition. For the term with the

D’Alembertian, we consider the definition

|2gη̃
δ,ε| ≤ |2g(1Dη(uu/δ))|(1− η(Nx0/ε20)) + Cη(δ

−11Gδ + 1Gε)

The only term in 2gη(uu/δ) that can give problem is when by chain rule we obtain

η′′δ−2(∇a(uu)∇a(uu)). But using the eikonal equations for u and u, we see that

|∇a(uu)∇a(uu)| = 2|Ω||uu|

and using that η′′ only is supported when uu ∈ (δ/2, δ), we see that

|η′′δ−2(∇a(uu)∇a(uu))| < Cηδ
−11Gδ
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as desired.

For the term ∇aS∇aη̃
δ,ε, we use the fact that since S is smoothly defined and

vanishes on H±, we can write S = uuS ′ for some smooth S ′. By the same argument

as was just given,

|∇aS∇aη̃
δ,ε| ≤ CA0Cη(1Gε + 1Gδ) .

Combining the computations above,

λ‖e−λfε η̃δ,ε|S|`∞‖L2 ≤ C̃εCηCA0‖e−λfε(1Gδ + 1Gε)‖L2 .

Now we take the limit as δ → 0, and observe that ‖1Gδ‖L2 → 0, the inequality

becomes

λ‖e−λfε1Bε40∩D|S|`∞‖L2 ≤ C̃εCηCS′‖e−λfε1Gε‖L2 .

Now observe that by definition of the weight fε

inf
Bε40∩D

e−λfε ≥ sup
Gε

e−λfε

so

λ‖1Bε40∩D|S|`∞‖L2 ≤ C̃εCηCS′‖1Gε‖L2

the right hand side now a fixed constant. Taking λ →∞ gives us that S must vanish

in Bε40 ∩D.

4.4.2 Consequences of vanishing B′ab and Q′
ab

Let N ⊂ M̃ ∩ D̄ be a connected open set containing H0 such that P ′,B′ab,Q′
abcd are

smoothly defined (in particular 4Ξ̄′ 6= 2M and F2 6= 0). Assume that B′ab and Q′
abcd

both vanish on N , and the technical conditions (4.22), (4.25), (4.26) are satisfied.

We observe that in the language of Theorem 3.2.1, the constants C1, C2 and C4 are
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now fixed (the last because of (4.25)). Therefore we can appeal to Lemma 3.3.7 (or

analogously Lemma 7.1 in [14] in the case of vanishing charge, since B′ab = 0 implies

Hab = 0 in N 2) to get a constant A such that, decomposing P ′ = y + iz,

(∇z)2 =
A− z2

y2 + z2
, (∇y)2 =

A + y2 + |qE + iqB|2 − 2My

y2 + z2
.

Proposition 4.4.9. In N , |∂(1)y| is uniformly bounded by CA0.

Proof. Consider the set N ∩ {|P ′| ≤ 8M}. Using that |qE + iqB|2∇P ′ = −2P ′2∇Ξ′

(a consequence of the vanishing of B′ab and Q′
abcd), we see that in the non-vanishing

charge case if |P ′| ≤ 8M , we can control |∂(1)P ′| trivially. In the case with vanishing

charge, observe that ∇P ′ = 2P ′2

M
F(t, ·), so again in |P ′| ≤ 8M we have direct control.

Therefore it suffices to considerN∩{|P ′| > 8M}. But if |P ′| > 8M , <(2M/P ′) < 1/4.

So by (4.25) (which by the arguments in Chapter 3 is extended to an algebraic identity

on N ) t2 < −3/4. In other words, t is time-like. Since ∇ty = 0 by definition, ∇y is

a space-like vector on N ∩ {|P ′| > 8M}. The uniform bound t2 < −3/4 implies that

we can uniformly control

|∂(1)y|2 < CA0(∇y)2 = CA0

y2 − 2My + A + |qE + iqB|2

y2 + z2

Since z is a bounded function by Lemma 3.3.7, the right hand side is bounded by a

large constant multiple of CA0 if |P ′| > 8M .

Now let N ′ ⊂ N ∩D be defined such that additionally,

y2 − 2My + A + |qE + iqB|2 > 0 .

We will compute the connection coefficients and the Hessian of y using the tetrad

2It is not necessary to appeal to Lemma 7.1. In view of the definitions given in Theorem 3.5.1,
the computations in Chapter 3 can be carried through exactly if F2 is assumed to be non-vanishing.
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formalism. The condition above, by (3.17), implies that U = lat
albt

b = 1
2
(∇y)2 6= 0,

where l, l are principal null vectors defined in Chapter 3. So we will impose the

normalization condition that g(t, l) = 1 for the local null tetrad.

As we have already computed in the proof of the characterization theorem, we

decompose ∇ay = −la + Ula, and hence that in an adapted tetrad, we have the

following conditions

θ = 1/P̄ ′ θ = −U/P ′

ξ = ξ = 0 ϑ = ϑ = 0

ζ = η ηη̄ = (∇z)2/(2P ′P̄ ′)

(the equations in the third line follows from (2.22f) and Lemma 3.3.7). Furthermore,

we have the following additional conditions: by (2.22b), Dθ = −θ2 − ωθ, so we can

solve for

ω = −DU/U =
M(y2 − z2)− (A + |qE + iqB|2 − z2)y

(y2 + z2)2
(4.37)

and that

ω = 0 . (4.38)

Lastly, we wish to compute the Hessian of y. To do so we use the formula

(∇2y)αβ = eα(eβy) − Γµ
βαeµ(y) and read off the values. In conclusion, the com-

putations lead us to the following

Lemma 4.4.10. On the set N ′ where (∇y)2 > 0, choosing the null tetrad to normalize

g(t, l) = 1, we define the functions

U =
y2 − 2My + A + |qE + iqB|2

2(y2 + z2)
,
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and

H =
M(y2 − z2)− (A + |qE + iqB|2 − z2)y

(y2 + z2)(y2 − 2My + A + |qE|iqB|2)
.

Then we have the following identities:

δy = δ̄y = Dz = Dz = 0 , Dy = 1 , Dy = −U , (∇y)2 = 2U (4.39)

(∇z)2 =
A− z2

y2 + z2
, z2 ≤ A (4.40)

ta = −la − Ula − η̄P ′ma − ηP̄ ′m̄a (4.41)

and

θ = 1/P̄ ′ θ = −U/P ′ (4.42)

ξ = ξ = 0 ϑ = ϑ = 0 (4.43)

−η
P ′

P̄ ′ = ζ = η ηη̄ =
(∇z)2

2(y2 + z2)
(4.44)

ω = HU ω = 0 (4.45)

We also have the following expressions for the Hessian of y:

(∇2y)33 = (∇2y)44 = 0 (∇2y)34 = (∇2y)43 = −HU (4.46)

(∇2y)41 = (∇2y)14 = ηU (∇2y)31 = (∇2y)13 = −ζ (4.47)

(∇2y)42 = (∇2y)24 = η̄U (∇2y)32 = (∇2y)23 = −ζ̄ (4.48)

(∇2y)12 = (∇2y)21 =
2y

y2 + z2
U (∇2y)22 = (∇2y)11 = 0 (4.49)

Remark 4.4.11. Observe that the above lemma is formally identical to Lemma 7.3

in [14].

The vanishing of B′ab and Q′
abcd also gives us finer control on y on a subset of Or1 :
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Lemma 4.4.12. There is a constant yH ∈ (M, 2M ] such that y = yH on the horizon.

In addition, A ∈ [0, M2 − |qE + iqB|2), and that for sufficiently small ε = ε(A0) we

have that

y > yH + MC−1
A0

uu

on Oε ∩D.

Proof. By Lemma (4.4.4) we’ve already shown the first claim. Using that (∇P )2 = 0

on H0, we see that (∇y)2 = 0 and hence y2
H − 2MyH + A + |qE + iqB|2 = 0. Since

y2
H > M , we must have that A + |qE + iqB|2 < M2.

Now notice that y − yH is a smooth function in Or1 ∩ D that vanishes on H±.

Therefore we can write it as y − yH = uuy′ for some smooth function y′ whose first

derivatives are bounded by CA0 . It thus suffices to show that y′ does not vanish on

the horizon. Using the identity

2gP
′ = − 2

P ′P̄
(M − P̄ ′)

we get

2gy = − 2

y2 + z2
(M − y) .

Applying this to y = yH + uuy′ and evaluating on the horizon:

2

y2
H + z2

(yH −M) = 2g(uuy′)|H± = 2∇au∇auy′ = 2y′ .

Since we assumed that yH > M(1 + A−1
0 ), y′ > MC−1

A0
on the horizon, and therefore

for some sufficiently small ε, we have that y′ > MC−1
A0

in Oε ∩D as desired.

4.4.3 The bootstrapping

In view of the assumption (AF), we just need to show that S vanishes along Σ0 ∩D.

We will here use a bootstrap argument to show that 4Ξ′ − 2M 6= 0, 1
P ′
6= 0, B′ab = 0
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and Q′
abcd = 0 on the stated set. Then by Theorem 3.5.1 we can conclude Theorem

4.4.5.

We define some sets over which our induction will work. Let Σ′
0 be the open subset

of Σ0 ∩D where F2 6= 0 and 4Ξ′ 6= 2M . Clearly Σ′
0 contains Oε0 ∩D by definition.

For any R > yH define VR = {x ∈ Σ′
0 : y < MR}, and UR as the unique connected

component of VR whose closure in Σ0 contains H0.

Proposition 4.4.13. There exists a number R1 ≥ yH/M + C−1
A0

such that B′ab and

Q′
abcd vanish in UR1.

Proof. Let Oε be as in Lemma 4.4.12. B′ab and Q′
abcd clearly vanishes in it. By

construction, u/u + u/u ≤ A0 in Σ0 ∩D ∩Oε. So by Lemma 4.4.12,

MC−1
A0

(u2 + u2) ≤ y − yH ≤ MCA0(u
2 + u2)

on Σ0 ∩D ∩Oε. Thus for sufficiently small R1, UR1 ⊂ Oε.

The main result of this section will be

Proposition 4.4.14. For any R2 ≥ R1 defined above, the tensors B′ab and Q′
abcd

vanish identically in UR2.

We prove the proposition by induction, in view of Proposition 4.4.13. Therefore

it suffices to show that given any R2 ≥ R1, assuming that B′ab and Q′
abcd vanish

identically in UR2 , then there exists a small r that depends only on CA0 , Ãε (see

(4.27). This constant controls the fact that t intersects Σ0 transversally in D. We

choose a small enough ε so that Oε ∩D ∩ Σ0 ⊂ UR1 from above), and the radius R2,

such that B′ab and Q′
abcd also vanish in UR2+r. In the following CR2 will denote any

constants depending on R2, A0, and Ãε. To close the induction, it is crucial that r

only depends on the above listed constants.
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Using the computations in Chapter 3, one recalls that in a domain where B′ab and

Q′
abcd vanish, |qE + iqB|2/P ′ = 2Ξ′. Of course, in the case where the charge vanishes,

Ξ′ is identically 0, so (4Ξ′ − 2M) is a constant and can be safely ignored in our

arguments. In the case where the charge does not vanish, we see that 2M − 4Ξ′ =

2[−|qE + iqB|2(y− iz)+M(y2 +z2)]/(y2 +z2). Recall that z2 ≤ A < M2−|qE + iqB|2.

Consider a point on the boundary ∂UR2
3, y = MR2 there, so we have the very loose

bound

2(R2
2 + 1)

R2
2

M > |2M − 4Ξ′| > 2(R2
2 −R2)

(R2
2 + 1)

M

on ∂UR2 . Using that R1 ≥ 1 by construction,

4M > |2M − 4Ξ′| > R2 − 1

R2

M .

Given the uniform control on the derivative of Ξ′, there exists a small r′2 that only

depends on A0 and R2 such that |2M − 4Ξ′| ∈ (R2−1
2R2

M, 8M) inside Br′2
of a point on

the boundary of UR2 . Now, since F2 = −(P ′)−4(4Ξ̄′− 2M)2, on the boundary of UR2

4

M3R4
2

> |F2| > R2 − 1

4R5
2

M−3

so we can also choose r′2 in a manner only depending on A0 and R2 so that |F2|

is bounded, and bounded away from zero in Br′2
using the fact that F2 is smooth.

Therefore P ′ is well-defined in Br′2
and so is y. We also have that the first four

derivatives of y are controlled by CR2 . So choosing r′2 sufficiently small again, we

have

y ∈ ((yH + MR1)/2, 2MR2) , ∀x ∈ Br′2
.

We consider r′2 fixed relative to a given R2 from now on.

By (4.27), we can also fix a δ2 > C−1
R2

so that (−δ2, δ2)× (Br′2
∩ Σ0) is diffeomor-

3Since UR2 is only defined as a subset of Σ0, we consider its boundary only in Σ0 ∩D. This will
be taken as a definition hereon.
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phic to ∪|s|<δ2Φ
(t)
s (Br′2

∩ Σ0) where Φ
(t)
s is the one-parameter (s) family of isometries

corresponding to the Killing vector field t. We write πQ for the projection from

∪|s|<δ2Φ
(t)
s (Br′2

∩ Σ0) to Br′2
∩ Σ0 induced by the above diffeomorphism.

We now write NR2 for the connected component of [∪sΦ
(t)
s (UR2) ∪ Or1 ] ∩ M̃ that

contains UR2 . By construction, we see that since t is Killing and the symmetry

descends to all geometric quantities concerned, 4Ξ′ 6= 2M , F2 6= 0, and B′ab and Q′
abcd

are well-defined and vanishing in NR2 . Therefore our results from Section 4.4.2 and

from Chapter 3 can be applied.

Lemma 4.4.15. Consider a point x0 on the boundary ∂UR2. There exists some

r2 < r′2 such that

{Πx0(x), x ∈ Br2 : y(x) < MR2} ⊂ ∪|s|<δ2Φ
(t)
s UR2 .

Proof. Recall that (∇y)2 = (y2 − 2My + A + |qE + iqB|2)/(y2 + z2) > 0 if y > yH.

Therefore we can find r′′2 < C−1
R2

such that (∇y)2 > C−1
R2

in Br′′2
. Therefore there

exists some r2 < r′′2 and a set B′ such that Br2 ⊂ B′ ⊂ Br′′2
and such that {x ∈

B′ : y(x) < MR2} is connected. Thus πQ({x ∈ B′ : y(x) < MR2}) ⊂ Br′2
∩ Σ0 is

a connected set containing {x ∈ B′ ∩ Σ0 : y(x) < MR2}. By the diffeomorphism

above, y commutes with πQ (which is a realization of the Killing symmetry). So

πQ({x ∈ B′ : y(x) < MR2}) ⊂ UR2 . The claim follows.

We now localize our attention to N ′ := NR2 ∩ Πx0Br2 . In N ′ we have that

(∇y)2 = 2U > 0. So computations in the second half of Section 4.4.2 can be used.

Note that U ≥ C−1
R2

by construction, and that we can also estimate H ≥ C−1
R2

by

observing that y − yH ≥ MC−1
R2

and yH > M .

We now offer a second Carleman estimate

Lemma 4.4.16. There is an ε < r2 sufficiently small and C̃ε sufficiently large such
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that for all λ > C̃ε and any φ ∈ C∞
0 (Bε10)

λ‖e−λfεφ‖L2 + ‖e−λfε |∂(1)φ|‖L2 ≤ C̃ελ
−1/2‖e−λfε2gφ‖L2 + ε−6‖e−λfε∇t(φ)‖L2 (4.50)

where with y(x0) = R2,

fε = ln(y −R2 + ε + ε12Nx0) . (4.51)

Proof. We apply Proposition 4.3.3 with V = t, hε = y−R2 + ε and eε = ε12Nx0 . It is

clear that all the conditions are satisfied for ε sufficiently small except that we need

to check hε is a good t-conditional family of pseudo-convex weights for some ε1. By

our construction, it is clear that (4.18a) it satisfied by definition. For (4.18b), we use

the computations from Lemma 4.4.10

∇ahε∇ahε = (∇y)2 = 2U

∇ay = −la + Ula

∇ay∇by∇2
aby = −2U(∇2y)34 = 2HU2

∇ahε∇bhε(∇ahε∇bhε − ε∇2
abhε) = 4U2 − 2εHU2

which we can bound from below by ε2
1 for sufficiently small ε1.

It remains to check (4.18c). Since this is a point-wise condition, we decompose X

using the null tetrad:

X = Wm + W̄ m̄ + Y l + Zl
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where W is complex and Y, Z are real. On the right hand side,

g(X, X) = 2WW̄ − 2Y Z

g(t,X) = Z + Y U −WηP̄ ′ − W̄ η̄P ′

= Z − Y U + 2Y U − 2<(WζP̄ ′)

g(X,∇y) = Z − Y U

∇2
X,Xhε = 2(−Y ZHU + WY ηU − ζWZ + W̄Y η̄U − W̄ ζ̄Z +

2y

y2 + z2
UWW̄ )

=
4MR2

M2R2
2 + z2

UWW̄ − 2Y ZHU − 2ζW (Z + Y U
P ′

P̄ ′ )− 2ζ̄W̄ (Z + Y U
P̄ ′

P̄
)

Notice that P ′

P̄ ′
= P ′ 2MR2

M2R2
2+z2 − 1.

∇2
X,Xhε =

4MR2U

M2R2
2 + z2

|W |2−2Y ZHU−(Z−Y U)4<(ζW )− 8MR2

M2R2
2 + z2

Y U<(ζWP̄ ′)

So

µg(X, X)−∇2
XXhε + ε−2(|g(t,X)|2 + |∇Xhε|2)

= 2µ|W |2 − 2µY Z − 4MR2

M2R2
2 + z2

UWW̄ + 2Y ZHU + 4(Z − Y U)<(ζW )

+
8MR2

M2R2
2 + z2

Y U<(ζWP̄ ′) + 2ε−2(Z − Y U)2

+ 4ε−2(Z − Y U)(Y U −<(WζP̄ ′)) + 4ε−2(Y U −<(WζP̄ ′))2

≥ (2µ− 4MR2

M2R2
2 + z2

U)|W |2 + 2(Z − Y U)(Y HU − µY + 2<(WζP̄ ′))

+ 2Y 2(HU2 − µU +
4MR2

M2R2
2 + z2

U2)

+
8MR2

M2R2
2 + z2

Y U(<(ζWP̄ ′)− Y U) + 2ε−2(Z − Y U)2

+ 4ε−2(Z − Y U)(Y U −<(WζP̄ ′)) + 4ε−2(Y U −<(WζP̄ ′))2
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Now set µ = 3MR2U/(M2R2
2 + z2) and noting that H > 0,

µg(X, X)−∇2
XXhε + ε−2(|g(t,X)|2 + |∇Xhε|2)

≥ 2MR2

M2R2
2 + z2

U |W |2 +
2MR2

M2R2
2 + z2

U2Y 2

+
ε−2

4
(Z − Y U)2 +

ε−1

4
(Y U −<(WζP̄ ′)2

for sufficiently small ε. Noting that U is bounded from below by C−1
R2

, this gives use

µg(X, X)−∇2
XXhε + ε−2(|g(t,X)|2 + |∇Xhε|2)

≥ C−1
R2

(Z2 + Y 2 + |W |2)

and thus (4.18c) holds for ε1 small enough.

Using the Carleman estimate, we have that

Proposition 4.4.17. For any fixed x0 on ∂UR2, there exists r3 < r2, r3 depending

on CR2, such that B′ab, and Q′
abcd vanishes in Br3.

Proof. We apply Lemma 4.4.16 for the vector S defined as in the proof of Proposition

4.4.8, and we also defined the weight function η the same way. Write

Sε = S(1− η(Nx0/ε40)) = S η̃ε

and again commute the Carleman estimate with Sε. The equation satisfied by Sε is

2gSε = Aη̃ε(∇S + S) +∇aS∇aη̃ε + S2gη̃ε

t(Sε) = t(η̃ε)S + t(S)η̃ε

Using the wave equation satisfied by S and the fact that B′ab, ∇cB′ab, and Q′
abcd are
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stationary under t, we have the following differential inequalities

|2gS|`∞ ≤ CR2(|S|`∞ + |∂(1)S|`∞)

|t(S)|`∞ ≤ CR2|S|`∞

Putting this into the Carleman estimate, it is clear that for λ sufficiently large, it

suffices to deal with the error terms coming from η̃ε. By construction, however, the

support of the error terms lies in {y > MR2} ∩ {Nx0 ≥ ε50}, the first contribution

arising from the fact that S vanishes when y ≤ MR2 and the second from the fact

that we are looking at the derivatives of a function which is constant near zero. Hence

the error terms have the pointwise bound

|∇aS∇aη̃ε|+ |S2gη̃ε|+ |S||∂(1)η̃ε| ≤ CR21{y>MR2}∩{Nx0≥ε50}∩Bε10

Therefore arguing as in the proof of Proposition 4.4.8, we compare

inf
Bε100

e−λfε ≥ sup
{y>MR2}∩{Nx0≥ε50}∩Bε10

e−λfε

and the Carleman inequality implies

λ
∣∣‖1Bε100

S‖L2

∣∣
`∞
≤ CR2C̃ε‖1{y>MR2}∩{Nx0≥ε50}∩Bε10

‖L2

and by taking λ →∞ we obtain that S must vanish identically in Bε100 .

To finish the proof of Proposition 4.4.14, we need to show that for some r < r3,

UR2+r is contained in the set where we have shown S and hence B′ab and Q′
abcd vanish.

Consider the set

U r
R2

:= UR2 ∪
(
∪∂UR2

{x ∈ Br3/C ∩ Σ0 : y(x) < M(R2 + r)}
)
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where the constant C is chosen so that the closure

⋃
∂UR2

{x ∈ B r3
C
∩ Σ0 : y(x) < M(R2 + r)} ⊂

⋃
∂UR2

{x ∈ B r3
4
∩ Σ0 : y(x) < M(R2 + r)}

where the closure is taken in Σ0. C exists as ∂UR2 is compact for any given R2 by

the asymptotic flatness assumption.

We claim that UR2+r ⊂ U r
R2

. The proof is exactly the same of that in Section 8.2

of [14]. We’ll sketch the proof here. Suppose the claim is false at some point p. Since

UR2+r is, by definition, connected to H0, we can choose a path in UR2+r such that it

contains points not in U r
R2

. Take one such smooth path, parametrize it to start from

H0, and let p′ be the first point not in U r
R2

. So p′ is necessarily in U r
R2

. Now p′ cannot

lie in UR2 , since by definition all those points are interior points of U r
R2

. So

p′ ∈ ∪∂UR2
{x ∈ Br3/C ∩ Σ0 : y(x) < M(R2 + r)} .

But we defined the closure in such a way that p′ must lie in Br3/2 ∩ Σ0 for some

boundary point x0 ∈ ∂UR2 . Inside Br3/2, we have that ∇y is a space-like smooth

vector field, and we can flow p′ along it in the negative direction. If r is chosen small

enough (say r < r3/1000), this operation generates (via a projection onto Σ0 by πQ) a

smooth curve the lies entirely in Br3/2∩Σ0 connecting p′ to some point p′′ in Br3/2∩Σ0

satisfying y(p′′) < MR2. By construction, this p′′ must be in UR2 , so there must exist

another point p′′′ on ∂UR2 whose distance to p′ is small. For the fixed constant C

defined above, we can further assume that r is small enough such that p′ will now

sit in Br3/C ∩ Σ0 from the point p′′′, contradicting the assumption that p′ is the first

point not in U r
R2

.
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4.4.4 Tidying up

To complete the proof of the uniqueness theorem, we first use Proposition 4.4.14 to

show that B′ab and Q′
abcd vanishes in the component of Σ′

0 that is connected to H0.

Suppose this component does not cover the entirety of Σ0 ∩D. We argue now in the

same way as Section 3.4 to conclude that any point in Σ0 ∩ D that does not lie in

the desired connected component of Σ′
0 cannot be reached from the interior by any

curve of finite Riemannian length, and we obtain a contradiction. Therefore F2 6= 0,

4Ξ′ 6= 2M , and B′ab and Q′
abcd are vanishing in the entirety of Σ0∩D. By stationarity,

the conditions hold in the entirety of D, establishing Theorem 4.4.5.
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