Name:

Standard exam rules apply:

- You are not allowed to give or receive help from other students.
- All electronic devices must be turned off for the duration of the test and stowed. This includes phones, pagers, laptops, tablets, e-readers, and calculators.
- The only things allowed on your desk are:
- Your writing implements, including also corrector fluids or erasers or similar.
- A water bottle or other drink.
- This booklet.
- This exam lasts from 11:30-12:20. Students may not leave the room until after 12:00; students may not (re)enter the room after 12:00.

INSTRUCTOR USE ONLY:

Q\#	pts	MAX
1 A		4
1B		4
2 A		2
2B		4
3A		4
3B		4
4		24

Q1. Let $\phi \in C^{2}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$ be a solution to the linear wave equation $\square \phi=0$. Let $\lambda \in \mathbb{R}_{+}$and denote by E the set

$$
E:=\left\{(t, x) \in \mathbb{R} \times \mathbb{R}^{3}| | t|\leq \lambda,|x| \geq 1\} .\right.
$$

A. (4pts) Suppose $\lambda<1$. Show that there exists a solution ϕ to the wave equation, that is not identically zero, but vanishes on the set E.
B. (4pts) Suppose $\lambda>1$. Show that any solution ϕ that vanishes on the set E must be identically zero.
(Hint: strong Huygens' principle [alternatively the Kirchhoff formula] can be useful.)

Solutions.

A. Let $\epsilon<1-\lambda$. Take any $g \in C_{c}^{\infty}(B(0, \epsilon))$ and solve the wave equation with initial data $\phi(0, x)=g(x)$ and $\partial_{t} \phi(0, x)=0$. By the finite speed of propagation property we have that $\phi \equiv 0$ whenever $|x| \geq|t|+\epsilon$. Our initial choice of ϵ then guarantees that $E \subset\{\phi=0\}$. If g is chosen to be nontrivial, the solution is also nontrivial.
B. Consider the points (t, x) with $t=1$ and $|x|<1$. Denote by $g(x)=\phi(-1, x)$ and $h(x)=\partial_{t} \phi(-1, x)$. By the Kirchoff formula we have that

$$
\phi(1, x)=\frac{1}{4 \pi} \int_{\mathbb{S}^{2}} g(x+2 \omega)+2 \partial_{v} g(x+2 \omega)+2 h(x+2 \omega) \mathrm{d} \omega
$$

Notice that when $|x|<1$, we have that $|x+2 \omega|>1$ by triangle inequality, and hence $(-1, x+2 \omega) \in$ E. This means that the integrand vanishes by assumption. Therefore $\phi(1, x) \equiv 0$ for all x. Similarly we conclude that $\partial_{t} \phi(1, x) \equiv 0$ for all x, and hence ϕ is a solution to the linear wave equation such that $\phi(1, x)=\partial_{t} \phi(1, x) \equiv 0$ and by uniqueness of solutions we have that $\phi \equiv 0$.

Q2. Suppose $\phi \in C^{2}(\mathbb{R} \times \mathbb{R})$ solves

$$
\begin{gathered}
-\partial_{t t}^{2} \phi+\partial_{x x}^{2} \phi=0 \\
\phi(0, x)=0 \\
\partial_{t} \phi(0, x)=h(x)
\end{gathered}
$$

where the data $h \in C^{2}(\mathbb{R})$ is such that $h(x)=0$ for all $|x| \geq 1$; and $h(x)>0$ for all $|x|<1$.
A. (2pts) Find all space-time points (t, x) where $\phi(t, x)=0$.
B. (2pts) Find all space-time points (t, x) where $\partial_{t} \phi(t, x)=0$.

Solutions. The answer to both parts follow from applying D'Alembert's formula

$$
\phi(t, x)=\frac{1}{2}\left[g(x+t)+g(x-t)+\int_{x-t}^{x+t} h(y) \mathrm{d} y\right] .
$$

A. In this part $g(x)=0$. So when $|x| \geq|t|+1$ we have that $h(y)$ vanishes in the integrand, and hence $\phi(t, x)=0$ there. On the other hand, when $|x|<|t|+1, \phi(t, x)$ is equal to the integral of a non-trivial, non-negative continuous function, and hence is positive.
B. Setting $\psi=\partial_{t} \phi$, we have that ψ solves the wave equation with data $\psi(0, x)=h(x)$ and $\partial_{t} \psi(0, x)=$ 0 . So applying D'Alembert's formula we have that

$$
\partial_{t} \phi(t, x)=\frac{1}{2}[h(x+t)+h(x-t)] .
$$

Hence $\partial_{t} \phi(t, x)>0$ whenever $(t, x) \in\{|x+t|<1\} \cup\{|x-t|<1\}$, and vanishes exactly on its complement.

Q3. Consider the Cauchy problem

$$
\begin{gathered}
\partial_{t} \phi+x \partial_{x} \phi=0 \\
\left.\phi\right|_{\Sigma}=f
\end{gathered}
$$

where $(t, x) \in \mathbb{R} \times \mathbb{R}$, and $\Sigma=\{t=|x|\}$.
A. (4pts) Give an example of a function $f \in C^{1}(\mathbb{R} \times \mathbb{R})$ such that there does not exist a $C^{1}(\mathbb{R} \times \mathbb{R})$ solution to the Cauchy problem. Justify your example.
B. (4pts) Give an example of a function $f \in C^{1}(\mathbb{R} \times \mathbb{R})$ such that there exists infinitely many $C^{1}(\mathbb{R} \times$ \mathbb{R}) solutions to the Cauchy problem. Justify your example.

Solutions.

A. The corresponding integral curves are $x=C e^{t}$ for $C \in \mathbb{R}$. Hence there are multiple ways to answer this question.

1. We can use the fact that \sum is not smooth: if we let $f(t, x)=t$, then if ϕ is any C^{1} function agreeing with f along Σ, we must have $\partial_{t} \phi(0,0)+\partial_{x} \phi(0,0)=\partial_{t} \phi(0,0)-\partial_{x} \phi(0,0)=1$. This means that the equation $\partial_{t} \phi+x \partial_{x} \phi$ cannot hold at the origin.
2. We can use the fact that the integral curves intersect \sum more than once: Let $C=e^{-2}$ for example, then the system $x=e^{t-2}$ and $|x|=t$ has two distinct solutions with different values of t. So setting $f(t, x)=t$ again means that we cannot have a solution, since the PDE implies ϕ must be constant along the integral curves.
3. We can use the fact that the integral curve becomes tangent to \sum when $C= \pm e^{-1}$. Here $(t, x)=(1, \pm 1)$. Setting again $f(t, x)=t$ would require that at $(t, x)=(1, \pm 1)$ that $\partial_{t} \phi(1, \pm 1)+$ $x \partial_{x} \phi(1, \pm 1)=1$, ruling out the existence of a solution.
B. Let $\psi \in C_{c}^{\infty}(\mathbb{R})$. Then we can check that setting $\phi(t, x)=\psi(t-\ln |x|)$ we have

$$
\partial_{t} \phi+x \partial_{x} \phi=\psi^{\prime}(t-\ln |x|) \cdot\left(1-x \cdot \frac{1}{x}\right)=0
$$

Furthermore, since ψ has compact support we have that ϕ is also smooth (especially near $|x|=$ $0)$. Next observe that if $t=|x|$, then $t-\ln |x|=t-\ln t>0$. So in particular if ψ and $\tilde{\psi}$ agree on the positive real axis, then the corresponding ϕ and $\tilde{\phi}$ agree on the set \sum. So letting $f=\phi=$ $\psi(t-\ln |x|)$ for any ψ described as above, we see that there exists infinitely many solutions to the Cauchy problem.

Q4. (4pts) Let $\Omega \subset \mathbb{R}^{d}$ be a bounded open set with C^{1} boundary. Consider the system

$$
\square \phi=0
$$

on $(0, T) \times \Omega$ with the nonlinear initial-boundary conditions

$$
\begin{gathered}
\phi(0, x)=\partial_{t} \phi(0, x)=0, \quad x \in \Omega ; \\
\left(\partial_{t} \phi\right)^{3}+e^{\phi} \partial_{n} \phi=0, \quad \text { along }[0, T] \times \partial \Omega
\end{gathered}
$$

Here $\partial_{n} \phi$ denotes the outward normal derivative on $\partial \Omega$. Prove that if $\phi \in C^{2}([0, T] \times \bar{\Omega} ; \mathbb{R})$ solves the system above, then $\phi \equiv 0$ on $[0, T] \times \bar{\Omega}$.

Solutions.

The energy method gives, for every $\tau \in(0, T]$,

$$
0=\int_{\{\tau\} \times \Omega} v \cdot{ }^{\left(\partial_{t}\right)} J \mathrm{~d} S+\int_{\{0\} \times \Omega} v \cdot{ }^{\left(\partial_{t}\right)} J \mathrm{~d} S+\int_{[0, \tau] \times \partial \Omega} v \cdot{ }^{\left(\partial_{t}\right)} J \mathrm{~d} S=E_{\tau}+E_{0}+F .
$$

Our choice of initial data means that E_{0}, the integral over $\{0\} \times \Omega$, vanishes. We know that along $\{\tau\} \times \Omega$, the outward normal $v=\partial_{t}$ and so $E_{\tau} \leq 0$.

We can compute on $[0, \tau] \times \partial \Omega$

$$
\left(\partial_{t}\right) J \cdot v=\partial_{n} \cdot m \cdot Q \cdot \partial_{t}=\partial_{n} \phi \partial_{t} \phi \leq 0
$$

since the boundary assumption implies that $\partial_{t} \phi$ and $\partial_{n} \phi$ have opposite signs.
Together this implies that $E_{\tau}=F=0$ for any τ. This means that $\nabla \phi \equiv 0$ on $[0, T] \times \Omega$ and hence $\phi \equiv 0$.

