MTH 847: PDE I (Fall 2017)

Exam 2, 2017.12.8

Name:

Standard exam rules apply:

- You are not allowed to give or receive help from other students.
- All electronic devices must be turned **off** for the duration of the test and stowed. This includes phones, pagers, laptops, tablets, e-readers, and calculators.
- The only things allowed on your desk are:
 - Your writing implements, including also corrector fluids or erasers or similar.
 - A water bottle or other drink.
 - This booklet.
- This exam lasts from 11:30 12:20. Students may not leave the room until after 12:00; students may not (re)enter the room after 12:00.

Q#	pts	MAX
1A		4
1 B		4
2A		2
2B		2
3A		4
3B		4
4		4
TOTAL		24

INSTRUCTOR USE ONLY:

Q1. Let $\phi \in C^2(\mathbb{R} \times \mathbb{R}^3)$ be a solution to the linear wave equation $\Box \phi = 0$. Let $\lambda \in \mathbb{R}_+$ and denote by *E* the set

$$E := \{(t, x) \in \mathbb{R} \times \mathbb{R}^3 \mid |t| \le \lambda, \ |x| \ge 1\}.$$

- A. (4pts) Suppose $\lambda < 1$. Show that there exists a solution ϕ to the wave equation, that is not identically zero, but vanishes on the set *E*.
- B. (4pts) Suppose $\lambda > 1$. Show that any solution ϕ that vanishes on the set *E* must be identically zero.

(Hint: strong Huygens' principle [alternatively the Kirchhoff formula] can be useful.)

Solutions.

- A. Let $\epsilon < 1-\lambda$. Take any $g \in C_c^{\infty}(B(0,\epsilon))$ and solve the wave equation with initial data $\phi(0,x) = g(x)$ and $\partial_t \phi(0,x) = 0$. By the finite speed of propagation property we have that $\phi \equiv 0$ whenever $|x| \ge |t| + \epsilon$. Our initial choice of ϵ then guarantees that $E \subset {\phi = 0}$. If g is chosen to be nontrivial, the solution is also nontrivial.
- B. Consider the points (t, x) with t = 1 and |x| < 1. Denote by $g(x) = \phi(-1, x)$ and $h(x) = \partial_t \phi(-1, x)$. By the Kirchoff formula we have that

$$\phi(1,x) = \frac{1}{4\pi} \int_{\mathbb{S}^2} g(x+2\omega) + 2\partial_{\nu}g(x+2\omega) + 2h(x+2\omega) \,\mathrm{d}\omega.$$

Notice that when |x| < 1, we have that $|x + 2\omega| > 1$ by triangle inequality, and hence $(-1, x + 2\omega) \in E$. This means that the integrand vanishes by assumption. Therefore $\phi(1, x) \equiv 0$ for all x. Similarly we conclude that $\partial_t \phi(1, x) \equiv 0$ for all x, and hence ϕ is a solution to the linear wave equation such that $\phi(1, x) = \partial_t \phi(1, x) \equiv 0$ and by uniqueness of solutions we have that $\phi \equiv 0$.

Q2. Suppose $\phi \in C^2(\mathbb{R} \times \mathbb{R})$ solves

$$-\partial_{tt}^2 \phi + \partial_{xx}^2 \phi = 0$$

$$\phi(0, x) = 0$$

$$\partial_t \phi(0, x) = h(x)$$

where the data $h \in C^2(\mathbb{R})$ is such that h(x) = 0 for all $|x| \ge 1$; and h(x) > 0 for all |x| < 1.

- A. (2pts) Find all space-time points (t, x) where $\phi(t, x) = 0$.
- B. (2pts) Find all space-time points (t, x) where $\partial_t \phi(t, x) = 0$.

Solutions. The answer to both parts follow from applying D'Alembert's formula

$$\phi(t,x) = \frac{1}{2} [g(x+t) + g(x-t) + \int_{x-t}^{x+t} h(y) \, \mathrm{d}y].$$

- A. In this part g(x) = 0. So when $|x| \ge |t| + 1$ we have that h(y) vanishes in the integrand, and hence $\phi(t, x) = 0$ there. On the other hand, when |x| < |t| + 1, $\phi(t, x)$ is equal to the integral of a non-trivial, non-negative continuous function, and hence is positive.
- B. Setting $\psi = \partial_t \phi$, we have that ψ solves the wave equation with data $\psi(0, x) = h(x)$ and $\partial_t \psi(0, x) = 0$. So applying D'Alembert's formula we have that

$$\partial_t \phi(t, x) = \frac{1}{2} [h(x+t) + h(x-t)].$$

Hence $\partial_t \phi(t, x) > 0$ whenever $(t, x) \in \{|x + t| < 1\} \cup \{|x - t| < 1\}$, and vanishes exactly on its complement.

Q3. Consider the Cauchy problem

$$\partial_t \phi + x \partial_x \phi = 0$$
$$\phi|_{\Sigma} = f$$

where $(t, x) \in \mathbb{R} \times \mathbb{R}$, and $\Sigma = \{t = |x|\}$.

- A. (4pts) Give an example of a function $f \in C^1(\mathbb{R} \times \mathbb{R})$ such that there does not exist a $C^1(\mathbb{R} \times \mathbb{R})$ solution to the Cauchy problem. Justify your example.
- B. (4pts) Give an example of a function $f \in C^1(\mathbb{R} \times \mathbb{R})$ such that there exists infinitely many $C^1(\mathbb{R} \times \mathbb{R})$ solutions to the Cauchy problem. Justify your example.

Solutions.

- A. The corresponding integral curves are $x = Ce^t$ for $C \in \mathbb{R}$. Hence there are multiple ways to answer this question.
 - 1. We can use the fact that Σ is not smooth: if we let f(t, x) = t, then if ϕ is any C^1 function agreeing with f along Σ , we must have $\partial_t \phi(0, 0) + \partial_x \phi(0, 0) = \partial_t \phi(0, 0) \partial_x \phi(0, 0) = 1$. This means that the equation $\partial_t \phi + x \partial_x \phi$ cannot hold at the origin.
 - 2. We can use the fact that the integral curves intersect Σ more than once: Let $C = e^{-2}$ for example, then the system $x = e^{t-2}$ and |x| = t has two distinct solutions with different values of *t*. So setting f(t, x) = t again means that we cannot have a solution, since the PDE implies ϕ must be constant along the integral curves.
 - 3. We can use the fact that the integral curve becomes tangent to Σ when $C = \pm e^{-1}$. Here $(t, x) = (1, \pm 1)$. Setting again f(t, x) = t would require that at $(t, x) = (1, \pm 1)$ that $\partial_t \phi(1, \pm 1) + x \partial_x \phi(1, \pm 1) = 1$, ruling out the existence of a solution.
- B. Let $\psi \in C_c^{\infty}(\mathbb{R})$. Then we can check that setting $\phi(t, x) = \psi(t \ln |x|)$ we have

$$\partial_t \phi + x \partial_x \phi = \psi'(t - \ln|x|) \cdot (1 - x \cdot \frac{1}{x}) = 0.$$

Furthermore, since ψ has compact support we have that ϕ is also smooth (especially near |x| = 0). Next observe that if t = |x|, then $t - \ln |x| = t - \ln t > 0$. So in particular if ψ and $\tilde{\psi}$ agree on the positive real axis, then the corresponding ϕ and $\tilde{\phi}$ agree on the set Σ . So letting $f = \phi = \psi(t - \ln |x|)$ for any ψ described as above, we see that there exists infinitely many solutions to the Cauchy problem.

Q4. (4pts) Let $\Omega \subset \mathbb{R}^d$ be a bounded open set with C^1 boundary. Consider the system

 $\Box \phi = 0$

on $(0, T) \times \Omega$ with the nonlinear initial-boundary conditions

$$\begin{split} \phi(0,x) &= \partial_t \phi(0,x) = 0, \quad x \in \Omega; \\ (\partial_t \phi)^3 + e^{\phi} \partial_n \phi = 0, \quad \text{along } [0,T] \times \partial \Omega. \end{split}$$

Here $\partial_n \phi$ denotes the outward normal derivative on $\partial \Omega$. Prove that if $\phi \in C^2([0, T] \times \overline{\Omega}; \mathbb{R})$ solves the system above, then $\phi \equiv 0$ on $[0, T] \times \overline{\Omega}$.

Solutions.

The energy method gives, for every $\tau \in (0, T]$,

$$0 = \int_{\{\tau\}\times\Omega} \nu \cdot {}^{(\partial_t)} J \, \mathrm{d}S + \int_{\{0\}\times\Omega} \nu \cdot {}^{(\partial_t)} J \, \mathrm{d}S + \int_{[0,\tau]\times\partial\Omega} \nu \cdot {}^{(\partial_t)} J \, \mathrm{d}S = E_\tau + E_0 + F.$$

Our choice of initial data means that E_0 , the integral over $\{0\} \times \Omega$, vanishes. We know that along $\{\tau\} \times \Omega$, the outward normal $\nu = \partial_t$ and so $E_{\tau} \leq 0$.

We can compute on $[0, \tau] \times \partial \Omega$

$${}^{(\partial_t)}J\cdot\nu=\partial_n\cdot m\cdot Q\cdot\partial_t=\partial_n\phi\partial_t\phi\leq 0$$

since the boundary assumption implies that $\partial_t \phi$ and $\partial_n \phi$ have opposite signs.

Together this implies that $E_{\tau} = F = 0$ for any τ . This means that $\nabla \phi \equiv 0$ on $[0, T] \times \Omega$ and hence $\phi \equiv 0$.

