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Q. Let Ω be a bounded, open domain in R
d . Suppose u ∈ C2(Ω) solves the equation

−4u + |∇u|2 = 0 onΩ

with boundary condition
u ≡ 0 on∂Ω.

• (pts) Prove that if u ≥ 0, then u ≡ 0. (If you use a maximum principle, make sure to include
the precise statement of your maximum principle and give a brief [no more than  sentences]
justification of why the maximum principle holds.)

• (Extra credit pts) Show that, even without the assumption u ≥ 0, we can conclude that u ≡ 0.
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Solutions. One option is to appeal to the maximum principle for subharmonic functions discussed
on question  of Homework . The principle states that

If u ∈ C2(Ω) satisfies −4u ≤ 0, then max
Ω
u = max∂Ωu.

This maximum principle can be proven by using the mean value property. Defining

φ(r) =
1

|∂B(x,r)|

∫
∂B(x,r)

u(y) dS(y)

we can compute to show φ(0) = u(x) and

φ′(r) =
1

|∂B(x,r)|

∫
B(x,r)

4u(y) dy ≥ 0.

This implies via a continuity argument that if u attains its maximum in the interior of Ω, then u must
be constant on the corresponding connected component.

By the maximum principle we have that u ≤ 0, but by assumption we have u ≥ 0, hence u ≡ 0.

Extra credit: for the extra credit, notice that defining v = e−u we have that ∇v = −e−u∇u and so
4v = e−u(−4u + |∇u|2) = 0. Apply both the maximum and minimum principle to v we conclude that
v is constant. And hence so must be u.
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Q. Let Ω be a bounded, open domain in R
d with C1 boundary. Let g ∈ C0(∂Ω). Define

A = {u ∈ C2(Ω) : u = g on ∂Ω}.

A. (pts) Let P (z) be a polynomial function of z. Define

IP [u] =
∫
Ω

1
2
|∇u|2 + P ◦u dx.

Prove that: if w ∈ A is such that
IP [w] = inf

v∈A
IP [v],

then w solves
−4w+ P ′(w) = 0.

B. (pts) Prove that the converse to part A is not necessarily true. More precisely, given P (z) = z3

and g ≡ 0, show that there exists a solution w ∈ A of

−4w+ P ′(w) = 0

such that w does not minimize IP .

(Hint for both parts: consider IP [w+λν] for λ ∈R and ν a fixed function.)
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Solutions.

A. Let ν ∈ C∞c (Ω) be fixed but arbitrary, and consider IP [w + tν] for t ∈ R. Notice that IP [w + tν] is
a polynomial in t, and hence is differentiable. By assumption t = 0 is a global minimum to this

polynomial, and so by elementary calculus d
dt IP [w+ tν]

∣∣∣∣
t=0

= 0.

A direct computation shows that this implies∫
Ω

∇w · ∇ν + P ′(w)ν dx = 0.

Integration by parts we get ∫
Ω

ν[−4w+ P ′(w)] dx = 0.

Since this holds for all ν ∈ C∞c (Ω), we conclude that −4w+ P ′(w) must vanish.
B. Observe that w ≡ 0 is inA, and solves the PDE. Now let ν be any non-zero, non-negative C∞c (Ω)

function. Then

IP [w+ tν] =
∫
Ω

1
2
|∇ν|2t2 + t3ν3 dx.

This is a polynomial of the form At3 + Bt2 with A > 0, so there exists some T < 0 such that
IP [w+ T ν] < 0 = IP [0].
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Q. Consider the initial value problem

∂tu(t,x)−4u(t,x) + f (t)u(t,x) = 0

on (0,∞)×Rd , with initial value u(0,x) = g(x). The functions f and g are both assumed to be contin-
uous, and g is further assumed to be bounded.

A. (pts) Write down an explicit formula for the solution u in terms of f and g.
B. (pts) Suppose there exists λ > 0 such that f (t) ≥ λ for all t > 0. Prove that

sup
x∈Rd
|u(t,x)| ≤ e−λt sup

x∈Rd
|g(x)|.
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Solutions. Let F(t) =
∫ t

0 f (s) ds; this quantity is differentiable and well-defined as f is continuous.
Consider the function w(t,x) = eF(t)u(t,x). We see that

∂tw −4w = eF(t) (∂tu + f u −4u)

and w(0,x) = u(0,x), so if w solves the heat equation with initial data g(x), then u = e−Fw solves the
desired PDE.

Now let Φ(t,x) denote the fundamental solution to the heat equation, we can write

w(t,x) =
∫
R
d

Φ(t,x − y)g(y) dy

and so

u(t,x) = e−
∫ t
0 f (s) ds

∫
R
d

1
(4πt)d/2

e−|x−y|
2/4tg(y) dy.

The assumption that f (t) ≥ λ implies F(t) ≥ λt. The weak maximum principle applied to w (since g
is bounded) implies

sup
x∈Rd
|w(t,x)| ≤ sup

x∈Rd
|g(x)|.

The desired inequality follows since

sup
x∈Rd
|u(t,x)| = e−F(t) sup

x∈Rd
|w(t,x)| ≤ e−λt sup

x∈Rd
|g(x)|.
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Q. Let u1 ≤ u2 ≤ u3 ≤ · · · be a sequence of increasing harmonic functions defined on B(0,1) ⊂R
d .

• (pts) Prove that if there exists x ∈ B(0,1) such that limi→∞ui(x) = +∞, then for every y ∈ B(0,1),
the limit limi→∞ui(y) = +∞.
(Hint: Harnack’s inequality.)

• (Extra credit pts) Suppose there exists some M > 0 and a point x such that ui(x) ≤M for every
i. Prove that the pointwise limit u(y) := limi→∞ui(y) of the sequence (ui) exists and is harmonic
on B(0,1).
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Solutions.

Harnack’s inequality states, in this context, that

If E is a bounded connected subset of B(0,1) such that E ⊂ B(0,1), then there exists a
constant C such that for every non-negative harmonic function v, supE v ≤ C infE v.

Without loss of generality we can assume u1 ≡ 0; otherwise consider instead the sequence ũi = ui −u1
of increasing non-negative harmonic functions.

Let y be arbitrary. Let R be such that max(|x|, |y|) < R < 1, then we can set E = B(0,R) so that x,y ∈ E.
Harnack’s inequality implies

ui(x) ≤ sup
E
ui ≤ C inf

E
ui ≤ Cui(y)

where C depends only on R and not on i. Then as ui(x) diverges to infinity as i→∞, so must ui(y).

For the extra credit: note that the statement implies its converse that if for some x the values ui(x) is
bounded for all i, then ui(y) is bounded (with a different bound) for all y. As an increasing bounded
sequence must converge, we have established pointwise convergence of the sequence (ui).

To prove that u is harmonic, it suffices to prove that it is continuous and satisfies the mean value
property. Observe that as a consequence of Harnack’s inequality, for every R ∈ (0,1), the functions u
and ui are all uniformly bounded on B(0,R). Now let y ∈ B(0,R) be arbitrary, and let z ∈ B(0,R) be a
nearby point. We have by the mean value property

ui(y)−ui(z) =
1

|B(0, r)|


∫

B(y,r)

ui(ξ) dξ −
∫

B(z,r)

ui(ξ) dξ

 .
This implies

|ui(y)−ui(z)| ≤
|B(y, r)∆B(z, r)|
|B(0, r)|

max
B(0,R)

|u|

provided r is sufficiently small that B(y, r)∪B(z, r) ⊂ B(0,R). (∆ denotes the symmetric set difference.)
Notice that the factor

|B(y, r)∆B(z, r)|
|B(0, r)|

=O(|y − z|)

in this case.

This implies that given y, for every ε, there exists some δ > 0 such that if |y−z| < δ then for every i ∈N
we have the uniform estimate |ui(y)−ui(z)| < ε/3. (In other words, the sequence ui is equicontinuous
on B(0,R).) Therefore for any R ∈ (0,1), the sequence ui is uniformly equicontinuous on B(0,R), and
thus by Arzelà-Ascoli theorem, the pointwise convergence of ui is in fact uniform convergence, and
therefore u is continuous and satisfies the mean value property, and hence is harmonic.






