Name:

Standard exam rules apply:

- You are not allowed to give or receive help from other students.
- All electronic devices must be turned off for the duration of the test and stowed. This includes phones, pagers, laptops, tablets, e-readers, and calculators.
- The only things allowed on your desk are:
- Your writing implements, including also corrector fluids or erasers or similar.
- A water bottle or other drink.
- This booklet.
- This exam lasts from 11:30-12:20. Students may not leave the room until after 12:00; students may not (re)enter the room after 12:00.

INSTRUCTOR USE ONLY:

Q\#	pts	MAX
1		5
2 A		4
2 B		4
3A		4
3 B		4
4		25

Q1. Let Ω be a bounded, open domain in \mathbb{R}^{d}. Suppose $u \in C^{2}(\bar{\Omega})$ solves the equation

$$
-\Delta u+|\nabla u|^{2}=0 \quad \text { on } \Omega
$$

with boundary condition

$$
u \equiv 0 \quad \text { on } \partial \Omega
$$

- (5pts) Prove that if $u \geq 0$, then $u \equiv 0$. (If you use a maximum principle, make sure to include the precise statement of your maximum principle and give a brief [no more than 4 sentences] justification of why the maximum principle holds.)
- (Extra credit 2pts) Show that, even without the assumption $u \geq 0$, we can conclude that $u \equiv 0$.

Solutions. One option is to appeal to the maximum principle for subharmonic functions discussed on question 8 of Homework 2. The principle states that

$$
\text { If } u \in C^{2}(\bar{\Omega}) \text { satisfies }-\Delta u \leq 0 \text {, then } \max _{\bar{\Omega}} u=\max _{\partial \Omega} u \text {. }
$$

This maximum principle can be proven by using the mean value property. Defining

$$
\phi(r)=\frac{1}{|\partial B(x, r)|} \int_{\partial B(x, r)} u(y) \mathrm{d} S(y)
$$

we can compute to show $\phi(0)=u(x)$ and

$$
\phi^{\prime}(r)=\frac{1}{|\partial B(x, r)|} \int_{B(x, r)} \Delta u(y) \mathrm{d} y \geq 0 .
$$

This implies via a continuity argument that if u attains its maximum in the interior of Ω, then u must be constant on the corresponding connected component.

By the maximum principle we have that $u \leq 0$, but by assumption we have $u \geq 0$, hence $u \equiv 0$.
Extra credit: for the extra credit, notice that defining $v=e^{-u}$ we have that $\nabla v=-e^{-u} \nabla u$ and so $\Delta v=e^{-u}\left(-\Delta u+|\nabla u|^{2}\right)=0$. Apply both the maximum and minimum principle to v we conclude that v is constant. And hence so must be u.

Q2. Let Ω be a bounded, open domain in \mathbb{R}^{d} with C^{1} boundary. Let $g \in C^{0}(\partial \Omega)$. Define

$$
\mathcal{A}=\left\{u \in C^{2}(\bar{\Omega}): u=g \text { on } \partial \Omega\right\} .
$$

A. (4pts) Let $P(z)$ be a polynomial function of z. Define

$$
I_{P}[u]=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}+P \circ u \mathrm{~d} x .
$$

Prove that: if $w \in \mathcal{A}$ is such that

$$
I_{P}[w]=\inf _{v \in \mathcal{A}} I_{P}[v],
$$

then w solves

$$
-\Delta w+P^{\prime}(w)=0 .
$$

B. (4pts) Prove that the converse to part A is not necessarily true. More precisely, given $P(z)=z^{3}$ and $g \equiv 0$, show that there exists a solution $w \in \mathcal{A}$ of

$$
-\Delta w+P^{\prime}(w)=0
$$

such that w does not minimize I_{P}.
(Hint for both parts: consider $I_{P}[w+\lambda v]$ for $\lambda \in \mathbb{R}$ and v a fixed function.)

Solutions.

A. Let $v \in C_{c}^{\infty}(\Omega)$ be fixed but arbitrary, and consider $I_{P}[w+t v]$ for $t \in \mathbb{R}$. Notice that $I_{P}[w+t v]$ is a polynomial in t, and hence is differentiable. By assumption $t=0$ is a global minimum to this polynomial, and so by elementary calculus $\left.\frac{d}{d t} I_{P}[w+t v]\right|_{t=0}=0$.
A direct computation shows that this implies

$$
\int_{\Omega} \nabla w \cdot \nabla v+P^{\prime}(w) v \mathrm{~d} x=0
$$

Integration by parts we get

$$
\int_{\Omega} v\left[-\Delta w+P^{\prime}(w)\right] \mathrm{d} x=0
$$

Since this holds for all $v \in C_{c}^{\infty}(\Omega)$, we conclude that $-\Delta w+P^{\prime}(w)$ must vanish.
B. Observe that $w \equiv 0$ is in \mathcal{A}, and solves the PDE. Now let v be any non-zero, non-negative $C_{c}^{\infty}(\Omega)$ function. Then

$$
I_{P}[w+t v]=\int_{\Omega} \frac{1}{2}|\nabla v|^{2} t^{2}+t^{3} v^{3} \mathrm{~d} x
$$

This is a polynomial of the form $A t^{3}+B t^{2}$ with $A>0$, so there exists some $T<0$ such that $I_{P}[w+T v]<0=I_{P}[0]$.

Q3. Consider the initial value problem

$$
\partial_{t} u(t, x)-\Delta u(t, x)+f(t) u(t, x)=0
$$

on $(0, \infty) \times \mathbb{R}^{d}$, with initial value $u(0, x)=g(x)$. The functions f and g are both assumed to be continuous, and g is further assumed to be bounded.
A. (4pts) Write down an explicit formula for the solution u in terms of f and g.
B. (4pts) Suppose there exists $\lambda>0$ such that $f(t) \geq \lambda$ for all $t>0$. Prove that

$$
\sup _{x \in \mathbb{R}^{d}}|u(t, x)| \leq e^{-\lambda t} \sup _{x \in \mathbb{R}^{d}}|g(x)| .
$$

Solutions. Let $F(t)=\int_{0}^{t} f(s) \mathrm{d} s$; this quantity is differentiable and well-defined as f is continuous. Consider the function $w(t, x)=e^{F(t)} u(t, x)$. We see that

$$
\partial_{t} w-\Delta w=e^{F(t)}\left(\partial_{t} u+f u-\Delta u\right)
$$

and $w(0, x)=u(0, x)$, so if w solves the heat equation with initial data $g(x)$, then $u=e^{-F} w$ solves the desired PDE.

Now let $\Phi(t, x)$ denote the fundamental solution to the heat equation, we can write

$$
w(t, x)=\int_{\mathbb{R}^{d}} \Phi(t, x-y) g(y) \mathrm{d} y
$$

and so

$$
u(t, x)=e^{-\int_{0}^{t} f(s) \mathrm{d} s} \int_{\mathbb{R}^{d}} \frac{1}{(4 \pi t)^{d / 2}} e^{-|x-y|^{2} / 4 t} g(y) \mathrm{d} y .
$$

The assumption that $f(t) \geq \lambda$ implies $F(t) \geq \lambda t$. The weak maximum principle applied to w (since g is bounded) implies

$$
\sup _{x \in \mathbb{R}^{d}}|w(t, x)| \leq \sup _{x \in \mathbb{R}^{d}}|g(x)| .
$$

The desired inequality follows since

$$
\sup _{x \in \mathbb{R}^{d}}|u(t, x)|=e^{-F(t)} \sup _{x \in \mathbb{R}^{d}}|w(t, x)| \leq e^{-\lambda t} \sup _{x \in \mathbb{R}^{d}}|g(x)| .
$$

Q4. Let $u_{1} \leq u_{2} \leq u_{3} \leq \cdots$ be a sequence of increasing harmonic functions defined on $B(0,1) \subset \mathbb{R}^{d}$.

- (4pts) Prove that if there exists $x \in B(0,1)$ such that $\lim _{i \rightarrow \infty} u_{i}(x)=+\infty$, then for every $y \in B(0,1)$, the limit $\lim _{i \rightarrow \infty} u_{i}(y)=+\infty$. (Hint: Harnack's inequality.)
- (Extra credit 3pts) Suppose there exists some $M>0$ and a point x such that $u_{i}(x) \leq M$ for every i. Prove that the pointwise limit $u(y):=\lim _{i \rightarrow \infty} u_{i}(y)$ of the sequence $\left(u_{i}\right)$ exists and is harmonic on $B(0,1)$.

Solutions.

Harnack's inequality states, in this context, that
If E is a bounded connected subset of $B(0,1)$ such that $\bar{E} \subset B(0,1)$, then there exists a constant C such that for every non-negative harmonic function $v, \sup _{E} v \leq C \inf _{E} v$.

Without loss of generality we can assume $u_{1} \equiv 0$; otherwise consider instead the sequence $\tilde{u_{i}}=u_{i}-u_{1}$ of increasing non-negative harmonic functions.

Let y be arbitrary. Let R be such that $\max (|x|,|y|)<R<1$, then we can set $E=B(0, R)$ so that $x, y \in E$. Harnack's inequality implies

$$
u_{i}(x) \leq \sup _{E} u_{i} \leq C \inf _{E} u_{i} \leq C u_{i}(y)
$$

where C depends only on R and not on i. Then as $u_{i}(x)$ diverges to infinity as $i \rightarrow \infty$, so must $u_{i}(y)$.
For the extra credit: note that the statement implies its converse that if for some x the values $u_{i}(x)$ is bounded for all i, then $u_{i}(y)$ is bounded (with a different bound) for all y. As an increasing bounded sequence must converge, we have established pointwise convergence of the sequence $\left(u_{i}\right)$.

To prove that u is harmonic, it suffices to prove that it is continuous and satisfies the mean value property. Observe that as a consequence of Harnack's inequality, for every $R \in(0,1)$, the functions u and u_{i} are all uniformly bounded on $B(0, R)$. Now let $y \in B(0, R)$ be arbitrary, and let $z \in B(0, R)$ be a nearby point. We have by the mean value property

$$
u_{i}(y)-u_{i}(z)=\frac{1}{|B(0, r)|}\left[\int_{B(y, r)} u_{i}(\xi) \mathrm{d} \xi-\int_{B(z, r)} u_{i}(\xi) \mathrm{d} \xi\right] .
$$

This implies

$$
\left|u_{i}(y)-u_{i}(z)\right| \leq \frac{|B(y, r) \Delta B(z, r)|}{|B(0, r)|} \max _{B(0, R)}|u|
$$

provided r is sufficiently small that $B(y, r) \cup B(z, r) \subset B(0, R)$. (Δ denotes the symmetric set difference.) Notice that the factor

$$
\frac{|B(y, r) \Delta B(z, r)|}{|B(0, r)|}=O(|y-z|)
$$

in this case.
This implies that given y, for every ϵ, there exists some $\delta>0$ such that if $|y-z|<\delta$ then for every $i \in \mathbb{N}$ we have the uniform estimate $\left|u_{i}(y)-u_{i}(z)\right|<\epsilon / 3$. (In other words, the sequence u_{i} is equicontinuous on $B(0, R)$.) Therefore for any $R \in(0,1)$, the sequence u_{i} is uniformly equicontinuous on $\overline{B(0, R)}$, and thus by Arzelà-Ascoli theorem, the pointwise convergence of u_{i} is in fact uniform convergence, and therefore u is continuous and satisfies the mean value property, and hence is harmonic.

There goes the neighbor hood. 2007 OCOURNEY GIBBONS

