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Abstract A quick introduction to the notion of Friedlander’s radiation field,
and its connections to plane-wave solutions of the wave equations, using the
explicit formulae available in three spatial dimensions.

We start by recalling the solution to the one dimensional wave equation: by the
method of characteristics we have that every solution φ : R×R→R of

−∂2
ttφ+∂2

xxφ = 0

can be decomposed as the sum of traveling waves

(0.1) φ(t,x) = ψ+(x+ t) +ψ−(x − t)

where the functions ψ+,ψ− : R→R are determined (up to an additive constant)
by the initial data. Physically, we may expect something similar for higher
dimensional waves: that a solution to the linear wave equation

(0.2) �φ = 0

on R × Rd can be represented as a superposition of “plane waves”. (In this
context, the fundamental solution, such as those given by the Kirchhoff or Poisson
parametrices, can be thought of as being related to the description of the solution
as a superposition by “spherical waves”.)

1. Plane waves

By a plane wave solution to (0.2) we mean that a solution that can be factored (in
the sense of function composition) through an affine map.
1.1 Definition
A solution φ : R×Rd →R to (0.2) is said to be a plane wave solution if there exists
a function ψ : R→R and a linear function A : R×Rd →R such that φ = ψ ◦A. �
1.2 Proposition
If φ is a plane wave solution to (0.2) then either:
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• there exists an unit vector ω ∈ Sd−1 ⊂R
d and a function ψ : R→R such that

φ(t,x) = ψ(t +ω · x), or

• φ is an affine function on R×Rd . �

Proof By definition we can find some ψ̃ and A such that φ = ψ̃ ◦A. Since A is a
linear function, we have that ∇A is constant. So we have ∂2

ttφ = (∂tA)2(ψ̃′′) ◦A
and 4φ = |∇A|2(ψ̃′′) ◦A. Therefore (0.2) implies either (∂tA)2 = |∇A|2 or ψ̃′′ ≡ 0.
The latter case implies φ is an affine function, since it is a composition of an affine
function ψ̃ with a linear function A. In the former case, observe that any linear
function A can be written in the form

A(t,x) = τt +ω · x,

for some τ ∈R and ω ∈Rd , and the derivative condition on A requires

τ2 = |ω|2.

If τ = 0, then necessarily ω = 0 and A is the constant map, in which case φ is
the constant function and is also affine. If, on the other hand, τ , 0, then after
redefining ψ̃ by rescaling the function’s inputs, we can assume, without loss of
generality, that τ = 1, and |ω| = 1 as claimed in the first alternative. �

1.3 Lemma
Any affine function on R×Rd can be expressed as a superposition of functions of
the form ψ(t +ω · x). �

Proof Let e1, . . . , ed be the standard unit vectors in R
d viewed as a subspace of

R×Rd , and let e0 be the unit vector in the time direction. Observe that the set

{e0 − e1, e0 + e1, e0 + e2, e0 + e3, . . . , e0 + ed}

forms a basis of R×Rd . The claim follows. �

Because of Lemma 1.3, we can focus on only the decomposition of arbitrary
solutions as superpositions of functions of the form ψ(t +ω · x). We see that (0.1)
is such a decomposition.
1.4 Definition
We say that a solution φ to (0.2) admits a plane wave decomposition if there exists a
function ψ : R×Sd−1→R such that

(1.5) �φ(t,x) =
∫

S
d−1

ψ(t +ω · x;ω) dω.
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Note that assuming ψ is sufficiently regular, by differentiating under the integral
sign any function of the form (1.5) is a solution to the wave equation.

For convenience, we will refer to the derivative with respect to the R factor of ψ
as ψ′, and the derivative with respect to the S

d−1 factor as /∇ψ.

In view of this, the questions becomes (similar to the one dimensional case):

Can we solve for ψ in terms of the initial data g,h of the wave equa-
tions? More precisely, given g,h : Rd →R, can we findψ : R×Sd−1→R

such that

g(x) =
∫

S
d−1

ψ(ω · x;ω) dω, and(1.6a)

h(x) =
∫

S
d−1

ψ′(ω · x;ω) dω.(1.6b)

This question is then that of the invertibility of certain “integral transformation”
and its further development is the field of “integral geometry”. In physics, this is
also related to the development of “twister theory”.

2. The radiation field

For convenience, let us restrict the discussion to three dimensions.

By the Strong Huygens Principle, we know that if the initial data g(x) = φ(0,x)
and h(x) = ∂tφ(0,x) have compact support, then the only points (t,x) at which
φ(t,x) , 0 are those such that can be joined to the support of g and h with a
light-like vector. In other words, denoting by K = suppg ∪ supph, the “action”
only takes place on the set

(2.1) K∗ :=
{
(λ,y −λω) ∈R×R3

∣∣∣ y ∈ K,λ ∈R,ω ∈ S2
}
.

It is then natural to ask about the asymptotic properties of the solution on K∗, in
particular, how does φ behave as λ↗ +∞ (or↘−∞) when y and λ are held fixed?

This can be answered in one way using the fundamental solution (Kirchhoff
parametrix). Previously we have already shown that the solution decays uniformly
like |t|−1 for |t| ≥ 1. Hence we know that

lim
λ→±∞

φ(λ,y −λω) = 0.

The question then is, what is

lim
λ→±∞

λφ(λ,y −λω)?
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For λ > 0, we can use the fundamental solution to write

(2.2) λφ(λ,y −λω) =
1

4πλ

∫
K∩∂B(y−λω,λ)

g(z) +λ∂ng(z) +λh(z) dS(z).

As previously discussed, K ∩∂B(y −λω,λ) admits a uniform area bound. Further-
more, we can define the set

(2.3) Πy,ω := {the hyperplane through the point y orthogonal to ω}.

Since K is compact we have that the set

K ∩∂B(y −λω,λ)→ K ∩Πy,ω

uniformly as λ→∞. So this means

(2.4) lim
λ→∞

λφ(λ,y −λω) =
1

4π

∫
K∩Πy,ω

ω · ∇g(z) + h(z) dS(z).

The right hand side of this expression is essentially the Radon transform1 of the
initial data.

Notice that on the right side of the equation (2.4), the integral is over the plane
Πy,ω; for any y′ ∈Πy,ω, the planes Πy,ω and Πy′ ,ω coincide. This implies that the
dependence of the limit on the variable y is only through the component y ·ω which
is constant (by definition) along Πy,ω.

2.5 Definition
Given a solution to the wave equation φ : R ×R3 → R, its radiation field is the
function Φ : R×S2 given by

Φ(y ·ω,ω) = lim
λ→∞

λφ(λ,y −λω) =
1

4π

∫
Πy,ω

ω · ∇g(z) + h(z) dS(z).

�

Interestingly, we now have two functions defined on R×S2 associated to a solution
φ to the wave equation on R×R3: the first is its plane wave decomposition ψ, and
the second is its radiation field Φ . Are the two functions perhaps related?

1A very brief description of the Radon transform: let P denote the set of all hyperplanes
of R

d . Given a function f : Rd → R, its Radon transform is the function rf : P → R given by
rf (Π) =

∫
Π
f (z) dS(z). The Radon transform is related to tomography and its inversion is related to

reconstruction of data from its cross-sectional tomography scans.
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3. The punch line

Let us compute the radiation field in terms of the plane-wave decomposition. For
simplicity of computation assume that ψ ∈ C∞c (R×S2). We then want to compute

(3.1) lim
λ→∞

λφ(λ,y −λω) = lim
λ→∞

∫
S

2

λψ(λ+ y ·ω′ −λω ·ω′;ω′) dω′ .

First, let’s consider the convergence property of this integral. The integrand is

λψ(λ(1−ω ·ω′) + y ·ω′;ω′).

For large λ, the compact support of ψ implies that only when ω is very close to ω′

(so that ω ·ω′ ≈ 1) would we be on the support of the integrand. More precisely,
using that for ω′ ∈ S2 near ω we can approximate

1−ω ·ω′ ≈ 1
2

∣∣∣ω −ω′∣∣∣2
we see that outside the region where∣∣∣ω −ω′∣∣∣ . 1

√
λ

the integrand vanishes. This justifies the boundedness of the integral in (3.1).
This also indicates how we can compute the limit.

Near the point ω we can view S
2 as a graph over the tangent plane at ω, that is to

say, we can look at the hemisphere centered at S2 as described by

{(x,1−
√

1− |x|2) ∈R3 | x ∈ B(0,1)}.

Based on what we computed in the previous section, we expect that the limit to
compute is independent of the choice of y as long as y ·ω is the same; so we can
assume that y ‖ω. This means that the integral can be rewritten as

(3.2)
∫

B(0,1)

λf (λ(1−
√

1− |x|2) + ỹ
√

1− |x|2;x)
1√

1− |x|2
dx

where ỹ = y ·ω. Our analysis above indicates that the integrand is supported
only when |x| ≤ c√

λ
for some constant c for all λ sufficiently large. This suggests

performing the change of variables

(3.3) x̃ =
√
λx

5



and rewrite the integral as

(3.4)
∫

B(0,c)

f (λ(1−
√

1−λ−1|x̃|2) + ỹ
√

1−λ−1|x̃|2;λ−1/2x̃)
1√

1−λ−1|x̃|2
dx̃.

Using the Taylor expansion

1−
√

1−λ−1|x̃|2 =
1
2
λ−1|x̃|2 + o(λ−1).

We see that the function

x̃ 7→ f (λ(1−
√

1−λ−1|x̃|2) + ỹ
√

1−λ−1|x̃|2;λ−1/2x̃)
1√

1−λ−1|x̃|2

converges, as λ→∞, uniformly on on B(0, c) to the function

x̃ 7→ f (ỹ +
1
2
|x̃|2;0).

Using that f has compact support again, we can write the integral as∫
R

2

f (ỹ +
1
2
|x|2;0) dx = 2π

∞∫
0

f (ỹ + s;0) ds.

We conclude finally that

(3.5) Φ(y ·ω,ω) = lim
y→∞

λφ(λ,y −λω) = 2π

∞∫
y·ω

ψ(s;ω) ds

or, alternatively

(3.6) ψ(s;ω) = − 1
2π
Φ ′(s,ω).

With this final formula, we are able to compute the coefficients ψ in the plane
wave decomposition in terms of the initial data g and h, through the formula
(2.4).
3.7 Remark
A short note about the compact support assumptions: our computation of the
radiation field leading to (2.4) assumes that g,h both have compact support. Note
that this implies that tha radiation field Φ has compact support: for every fixed ω
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and every λ sufficiently large, if y ·ω = λ than the planeΠy,ω does not intersect the
support of g and h, and hence the integral (2.4) yields 0. A posteriori this means
that if we define ψ(s;ω) by the formula (3.6) then the function ψ will also have
compact support, which justifies the computations leading up to the formula.

So what we have shown is that given every g,h ∈ C∞c (R3), there exists exactly one
ψ ∈ C∞c (R × S2) such that the solution given by Kirchhoff’s formula applied to g,h
and the solution corresponding to (1.5) applied to ψ have the same radiation field.
While this gives a very appealing formula, the complete proof of its correctness is
beyond the scope of this course; we refer interested students to [1]. �
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